DOI QR코드

DOI QR Code

An analysis of the connections of mathematical thinking for multiplicative structures by second, fourth, and sixth graders

곱셈적 구조에 대한 2, 4, 6학년 학생들의 수학적 사고의 연결성 분석

  • Received : 2013.10.15
  • Accepted : 2014.02.12
  • Published : 2014.02.28

Abstract

This study investigated the connections of mathematical thinking of students at the second, fourth, and sixth grades with regard to multiplication, fraction, and proportion, all of which have multiplicative structures. A paper-and-pencil test and subsequent interviews were conducted. The results showed that mathematical thinking including vertical thinking and relational thinking was commonly involved in multiplication, fraction, and proportion. On one hand, the insufficient understanding of preceding concepts had negative impact on learning subsequent concepts. On the other hand, learning the succeeding concepts helped students solve the problems related to the preceding concepts. By analyzing the connections between the preceding concepts and the succeeding concepts, this study provides instructional implications of teaching multiplication, fraction, and proportion.

Keywords

References

  1. 강흥규 (2009). 배 개념에 기초한 자연수 곱셈 개념의 지도 방안, 학교수학 11(1), 17-37. (Kang, H. K. (2009). An alternative program for the teaching of multiplication concept based on times idea, School Mathematics 11(1), 17-37.)
  2. 김경미, 황우형 (2012). 자연수와 분수 연산에 대한 학생들의 이해 분석, 수학교육 51(1), 21-45. (Kim, K. M. & Whang, W. H. (2012). An analysis of students' understanding of operations with whole numbers and fractions, The Mathematical Education 51(1), 21-45.) https://doi.org/10.7468/mathedu.2012.51.1.021
  3. 김용익 (2009). 비례 상황에 기초한 비의 지도방법 연구. 박사학위논문, 한국교원대학교. (Kim, Y. I. (2009). A study on the teaching method of ratio based on the proportional situation. Doctoral dissertation, Korea National University of Education.)
  4. 김정원, 방정숙 (2013). 초등학교 3학년 학생들의 곱셈적 사고에 따른 비례 추론 능력 분석, 학교수학 23(1), 1-16. (Kim, J. W., & Pang, J. S. (2013). An analysis on third graders' multiplicative thinking and proportional reasoning ability, School Mathematics 23(1), 1-16.)
  5. 박희옥, 박만구 (2012). 비와 비율 학습에서 나타나는 초등학교 학생들의 인식론적 장애 분석, 초등수학교육 15(2), 159-170. (Park, H. O., & Park, M. G. (2012). An analysis on the epistemological obstacles of elementary students in the learning of ratio and rate, Elementary Mathematics Education, 15(2), 159-170.)
  6. 방정숙, 김상화(2007). 초등교사의 수학과 교수법적 내용 지식의 정립을 위한 교수.학습 자료 개발, 한국학교수학회논문집 10(1), 129-148. (Pang, J. S., & Kim, S. H. (2007). Development of teaching and learning materials for elementary school teachers to foster pedagogical content knowledge in mathematics, Journal of the Korean School Mathematics Society 10(1), 129-148.)
  7. 신준식 (2013). 문제 상황과 연결된 분수 나눗셈의 교과서 내용 구성 방안, 수학교육 52(2), 207-230. (Shin, J. S. (2013). A proposal to the construction of textbook contents of fraction division connected to problem context, The Mathematical Education 52(2), 207-230.) https://doi.org/10.7468/mathedu.2013.52.2.217
  8. 정은실 (2006). 분수 개념의 의미 분석과 교육적 시사점 탐구, 학교수학 8(2), 123-138. (Jeong, E. S. (2006). An educational analysis on fraction concept, School Mathematics 8(2), 123-138.)
  9. Baroody, A. J., & Coslick, R. T. (1998). 수학의 힘을 길러주자. 왜? 어떻게? (권성룡 외 11인 공역), 서울:경문사.
  10. Behr, M. J., Lesh, R., Post, T., & Silver, E. A. (1983). Rational-number concepts. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 92-126). Orlando, FL: Academic Press.
  11. Charalambous, C. Y., & Pitta-Pantazi, D. (2007). Drawing on theoretical to study students' understandings of fractions., Educational Studies in Mathematics 64(3), 293-316. https://doi.org/10.1007/s10649-006-9036-2
  12. Clark, F., & Kammi, C. (1996). Identification of multiplicative thinking in children in grades 1-5, Journal of Research in Mathematics Education 27(1), 41-51. https://doi.org/10.2307/749196
  13. Lamon, S. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 629-668). Charlotte, NC: Information Age Publishing and the National Council of Teachers of Mathematics.
  14. Piaget, J. (1987). Possibility and necessity. Minneapolis, MN: University of Minnesota Press.
  15. Schwartz, J. (1988). Intensive quantity and referent transforming arithmetic operation. In J. Hiebert & M. Behr (Eds.), Number concepts and operations in the middle grades (Vol. 2) (pp. 41-52). Reston, VA: Lawrence Erlbaum Associates.
  16. Steffe, L. (1994). Children's multiplying scheme. In G. Harel, & J. Confrey (Eds.), The development of multiplication reasoning in the learning of mathematics (pp. 3-39). Albany, NY: State University of New York Press.
  17. Streefland, L. (1993). Fraction: A realistic approach. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers: An integration of research (pp. 289-325). Hillsdale, NJ: Lawrence Erlbaum Associates.
  18. Vergnaud (1996). The theory of conceptual fields. In L. P. Steffe & P. Nesger (Eds.), Theories of mathematical learning (pp. 219-239). Mahwah, NJ: Lawrence Erlbaum Associates.
  19. Vergnaud (1998). Multiplicative structure. In J. Hiebert, & M. Behr (Eds.), Number concepts and operations in the middle grades (Vol. 2) (pp. 141-161). Reston, VA: National Council of Teachers of Mathematics.