• Title/Summary/Keyword: mathematical performances

Search Result 175, Processing Time 0.026 seconds

Mathematical Models of a Transformer Cooling System for the Control Algorithm Development (제어알고리즘 개발을 위한 변압기 냉각시스템의 수학적모델)

  • Han, Do-Young;Noh, Hee-Jeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.70-77
    • /
    • 2010
  • In order to improve the efficiency of a main transformer in a train, the optimal operation of a cooling system is necessary. For the development of optimal control algorithms of a cooling system, mathematical models of a main transformer cooling system were developed. These include static and dynamic models of a main transformer, an oil pump, an oil cooler, and a blower. Static models were used to find optimal oil temperatures of the inlet and the outlet of a transformer. Dynamic models were used to predict transient performances of control algorithms of a blower and an oil pump. Simulation results showed good predictions of the static and the dynamic behavior of a main transformer cooling system. Therefore, mathematical models developed in this study may be effectively used for the development of control algorithms of a main transformer cooling system.

Mathematical modeling of the impact of Omicron variant on the COVID-19 situation in South Korea

  • Oh, Jooha;Apio, Catherine;Park, Taesung
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.22.1-22.9
    • /
    • 2022
  • The rise of newer coronavirus disease 2019 (COVID-19) variants has brought a challenge to ending the spread of COVID-19. The variants have a different fatality, morbidity, and transmission rates and affect vaccine efficacy differently. Therefore, the impact of each new variant on the spread of COVID-19 is of interest to governments and scientists. Here, we proposed mathematical SEIQRDVP and SEIQRDV3P models to predict the impact of the Omicron variant on the spread of the COVID-19 situation in South Korea. SEIQEDVP considers one vaccine level at a time while SEIQRDV3P considers three vaccination levels (only one dose received, full doses received, and full doses + booster shots received) simultaneously. The omicron variant's effect was contemplated as a weighted sum of the delta and omicron variants' transmission rate and tuned using a hyperparameter k. Our models' performances were compared with common models like SEIR, SEIQR, and SEIQRDVUP using the root mean square error (RMSE). SEIQRDV3P performed better than the SEIQRDVP model. Without consideration of the variant effect, we don't see a rapid rise in COVID-19 cases and high RMSE values. But, with consideration of the omicron variant, we predicted a continuous rapid rise in COVID-19 cases until maybe herd immunity is developed in the population. Also, the RMSE value for the SEIQRDV3P model decreased by 27.4%. Therefore, modeling the impact of any new risen variant is crucial in determining the trajectory of the spread of COVID-19 and determining policies to be implemented.

Is Mathematics Teaching in East Asia Conducive to Creativity Development? - Results from the TIMSS 1999 Video Study and the Learners' Perspective Study

  • Leung Frederick K. S.;Park Kyungmee
    • Research in Mathematical Education
    • /
    • v.9 no.3 s.23
    • /
    • pp.203-231
    • /
    • 2005
  • Students in East Asia have consistently out-performed their counterparts in the West in recent international studies of mathematics achievement. But some studies also show that East Asian students are more rigid in thought, and lack originality and creativity. While different theories have been proposed to account for these student performances, relatively few research studies have been done on classroom practices, potentially a major variable for explaining student performances. This paper will report on the results of two classroom studies: the TIMSS 1999 Video Study and the Learners' Perspective Study (LPS). Results the quantitative analysis of the TlMSS 1999 Video Study data show that the East Asian classrooms were dominated by teacher talk, and the mathematics content learned was abstract and unrelated to the real life. On the other hand, the characteristics of the instructional practices in Hong Kong as judged by an expert panel are that student learned relatively advanced mathematics content; the components of the lessons were more coherent, and the presentation of the lessons was more fully developed. Hong Kong students seemed to be more engaged in the mathematics lessons, and the. overall quality of the lessons was judged to be high. Results of the analysis of the LPS data also show that the classrooms in the East Asian city of Seoul were in general teacher dominated, but students were usually actively engaged in the mathematics learning. Emphasis on exploration of mathematics and practicing exercises with variation was common. It is argued that the quality teaching in the East Asian classrooms laid a firm foundation in mathematics for students, and that constitutes a necessary condition for the development of students' creativity. In order to fully develop the creativity of East Asian students, they need to be given the right environment and encouragement.

  • PDF

Vendor-Managed Inventory in Three Stage Supply Chain

  • Ryu, Chungsuk
    • Journal of Distribution Science
    • /
    • v.15 no.8
    • /
    • pp.15-28
    • /
    • 2017
  • Purpose - Many researchers analyze VMI as a supply chain collaboration program to reveal its true value. Most of them focus on the dyadic relationship in two stage supply chain systems. This study examines the effect of VMI when it is applied to the different parts of three stage supply chain systems. Research design, data, and methodology - Based on three stage supply chain, this study compares three different systems including full VMI, partial VMI, and non-VMI by using mathematical models. The performances of three systems are compared with the numerical examples of the proposed supply chain models. Results - The numerical examples reveal that full VMI where the manufacturer controls inventories at all stages outperforms any other systems in terms of the system profit and enables all individual members to gain greater profits than non-VMI. Meanwhile, under partial VMI where VMI is implemented between the wholesaler and retailer, only these two members improve their performances and the manufacturer who does not belong to VMI makes less profit than even under non-VMI. This study also examines the impact of market size and profit margin on the system performance. Conclusions - The result of this study supports the common belief that VMI secures the best result when it is applied to the entire supply chain system. The additional findings from the numerical analysis are discussed.

A Design of New Transmission Signal Structure for User Cooperative Communication (사용자 협력통신을 위한 새로운 전송 신호 구조 설계)

  • Jeong, Hwi-Jae;Kong, Hyung-Yun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.4
    • /
    • pp.383-388
    • /
    • 2007
  • In this paper, we propose a new signal frame structure based on Alamouti code that can maintain the same performance as Alamouti code and increase spectral efficiency. The proposed signal frame structure can increase spectrum efficiency to approach 1(bit/s/Hz) since it can process n bit data during (n+1) time slot. In order to verify two performances, we derive closed form BER via mathematical approach, and compare with the simulation result in Rayleigh fading plus AWGN channel. Then we find that the two performances are exactly same.

Decentralized $H_{\infty}$ Control of Multiple Magnetic Levitation System (다중 자기부상 시스템의 분산형 $H_{\infty}$ 제어)

  • Kim Jong-Moon;Lee Sang-Hyuk;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.689-697
    • /
    • 2005
  • In this paper, an application of a decentralized $H_{\infty}$ controller(DHC) to multiple controlled-permanent magnet(CMAG) magnetic levitation(Maglev) systems is presented. The designed DHC using two Riccati equations iteratively has simpler structure and needs less computational loads than conventional centralized $H_{\infty}$ controller. A target plant is a hybrid-type CMAG system with permanent magnet and coil, and its mathematical model is firstly derived to design the DHC. To implement the designed algorithm, a real Maglev vehicle system including digital controller, chopper, sensor, etc., is manufactured. To compare the performances of the DHC method with an observer-based state feedback control(OSFC), the input tracking and disturbance rejection characteristics are experimentally tested. As performance indices(PI), integral of squared error(ISE), integral of absolute error(IAE), integral of time multiplied by absolute error(ITAE) and integral of time multiplied by squared error(ITSE) are used. From the experimental results, it can be seen that the input tracking and disturbance rejection performances of the DHC are better than those of the conventional controller.

Using an ABS Controller and Rear Wheel Controller for Stability Improvement of a Vehicle (ABS 제어 및 후륜조향 제어기를 이용한 차량 안정성 개선에 관한 연구)

  • Song, Jeong-Hoon;Boo, Kwang-Suck;Lee, Jong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1125-1134
    • /
    • 2004
  • This paper presents a mathematical model which is about the dynamics of not only a two wheel steering vehicle but a four wheel steering vehicle. A sliding mode ABS control strategy and PID rear wheel control logic are developed to improve the brake and cornering performances, and enhance the stability during emergency maneuvers. The performances of the controllers are evaluated under the various driving road conditions and driving situations. The numerical study shows that the proposed full car model is sufficient to accurately predict the vehicle response. The proposed ABS controller reduces the stopping distance and increases the vehicle stability. The results also prove that the ABS controller can be employed to a four wheel steering vehicle and improves its performance. The four wheel steering vehicle with PID rear wheel controller shows increase of stability when a vehicle speed is high and sharp cornering maneuver when a vehicle speed is low compared to that of a two wheel steer vehicle.

Analysis of Dynamic Characteristics and Performances of Vent-Relief Valve (산화제 벤트/릴리프밸브의 동특성 해석 및 작동성능분석)

  • Jang, Je-Sun;Koh, Hyeon-Seok;Han, Sang-Yeop;Lee, Kyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.741-747
    • /
    • 2010
  • Vent-relief valve performed as a safety-valve combination for liquid propellant feeding system of space launch vehicle, which can vent the vaporized oxygen vapor during both filling cryogenic oxidizer into tank and flight. We have designed vent-relief model by using the AMESim code to predict dynamic characteristics and simulate pneumatic behavior of valve. To validate valve model we have compared by opening time in vent model, and opening/closing pressure by mathematical methods and improved the accuracy through numerical flow analysis by using FLUENT code. In this study, we had verified design parameters and analyzed operating performances. We can use these analysis results to precedent development study on propellant feeding system of Korea Space Launch Vehicle.

  • PDF

A Study on the Performances of Hybrid type Electric Brake System (하이브리드형 전기식 제동장치의 성능에 대한 연구)

  • Song, Jeong-Hoon;Boo, Kwang-Suck;Lim, Chul-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1492-1498
    • /
    • 2003
  • This study proposes a new conceptual Hybrid Electric Brake System (HEBS) which overcomes problems of a conventional hydraulic brake system. HEBS adopt a contactless type bake system when a vehicle speed is high, to obtain superior braking performances by eddy current. On the contrary, when a vehicle speed is low, HEBS employs a contact type brake system such as conventional hydraulic brake system to generate higher brake force. Therefore, HEBS transfers faster the braking intention of drivers and guarantees the safety of drivers. Braking torque analysis is performed by using a mathematical model which is proposed to investigate the characteristic of a vehicle dynamics when the brake torque is applied. Optimal torque control is achieved by maintaining a desired slip corresponding to the road condition. The results show that HEBS reduces the stopping distance, saves the electric energy, and increases the stability.

Comparative Analysis of CNN Techniques designed for Rotated Object Classifiation (회전된 객체 분류를 위한 CNN 기법들의 성능 비교 분석)

  • Hee-Il Hahn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.181-187
    • /
    • 2024
  • There are two kinds of well-known CNN methods, the group equivariant CNN and the CNN using steerable filters, which have excellent classification performances for randomly rotated objects in image space. This paper describes their mathematical structures and introduces implementation methods. We implement them, including the existing CNN, which have the same number of filters, then compare and analyze their performances by simulating them with the randomly rotated MNIST. According to the experimental results, the steerable CNN, which shows a classification improvement over the others, has a relatively small number of parameters to learn, so performance degradation is relatively small even when the size of the training dataset is reduced.