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Introduction 

Coronavirus disease widely known as coronavirus disease 2019 (COVID-19) is a new dis-
ease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus 
that emerged from Wuhan, China [1] and spread rapidly across the world becoming a 
global pandemic in March 2020 [2]. The pandemic caught many governments and people 
by surprise which led to the implementation of unprecedented intervention policies like 
school and workplace closures, suspension of public transportation, international travel re-
strictions, and so forth [3], with aims of mitigation and suppression. The reason was to not 
overwhelm the unprepared healthcare systems and lower the number of cases until a phar-
macological solution was found [4,5]. In addition, many pharmaceutical companies in 
partnership with government bodies launched one of the fastest vaccine development 
projects of our decade leading to the development of multiple vaccines [6,7]. The Coali-
tion for Epidemic Preparedness Innovations (CEPI) worked with global health authori-
ties, governments, and vaccine developers to support the development of vaccines against 
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The rise of newer coronavirus disease 2019 (COVID-19) variants has brought a challenge to 
ending the spread of COVID-19. The variants have a different fatality, morbidity, and trans-
mission rates and affect vaccine efficacy differently. Therefore, the impact of each new 
variant on the spread of COVID-19 is of interest to governments and scientists. Here, we 
proposed mathematical SEIQRDVP and SEIQRDV3P models to predict the impact of the 
Omicron variant on the spread of the COVID-19 situation in South Korea. SEIQEDVP con-
siders one vaccine level at a time while SEIQRDV3P considers three vaccination levels (only 
one dose received, full doses received, and full doses + booster shots received) simultane-
ously. The omicron variant’s effect was contemplated as a weighted sum of the delta and 
omicron variants’ transmission rate and tuned using a hyperparameter k. Our models’ per-
formances were compared with common models like SEIR, SEIQR, and SEIQRDVUP using 
the root mean square error (RMSE). SEIQRDV3P performed better than the SEIQRDVP mod-
el. Without consideration of the variant effect, we don’t see a rapid rise in COVID-19 cases 
and high RMSE values. But, with consideration of the omicron variant, we predicted a con-
tinuous rapid rise in COVID-19 cases until maybe herd immunity is developed in the popu-
lation. Also, the RMSE value for the SEIQRDV3P model decreased by 27.4%. Therefore, 
modeling the impact of any new risen variant is crucial in determining the trajectory of the 
spread of COVID-19 and determining policies to be implemented. 
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COVID-19 [8]. 
This pandemic also attracted the interest of researchers from 

different fields since it was a new disease and its transmission path-
ways and fatality were not yet known. From the outbreak to 4 
February, 2022, researchers have contributed a lot in forecasting, 
and understanding the transmission dynamics, the fatality of 
SARS-CoV-2, and the evolution of the pandemic, to help in the 
fight against this new global problem. Among the researchers, stat-
isticians, epidemiologists, and mathematicians contributed to for-
mulating models to capture the transmission dynamics of 
COVID-19 and forecasting the evolution of the pandemic among 
different populations amidst government interventions. These 
mainly included statistical models [9-18], deep-learning models 
[19-24] and mathematical models [1,14,25,26]. 

Statistical models offer more precise models and deep-learning 
techniques are the key to high-quality predictive models [27]. 
However, both statistical and deep-learning models require real 
data to make predictions. But with mathematical models, a set of 
mathematical equations that mimic the current situation is written, 
and solving them for certain parameters provide information about 
the disease characteristics [28]. Some of their advantages include 
mathematical models representing the real situation of the problem 
being solved and they do not require all data to be available for it to 
be fitted as deductions from known information about the situation 
can be used. Also, they can handle sudden changes and complexity 
with ease. Since the start of the COVID-19 pandemic, mathemati-
cal models have been at the forefront of determining and forecast-
ing the spread of COVID-19 and shaping government policies 
around the world [28]. 

A seminal paper in 1927 introduced the Susceptible, Infectious, 
and Recovered (SIR), a mathematical model for infectious diseas-
es [29]. Since then, with advances in information technology and 
fast computing methods, many variations of the SIR model have 
been developed. Because mathematical models can easily be un-
derstood and definite conclusions about the COVID-19 outbreak 
can be made from them, Susceptible, Exposed, Infectious and Re-
covered (SEIR), a modification of SIR and a cascade of other 
modifications have been constructed and developed for predicting 
COVID-19 since its declaration as a global pandemic [30-42]. 

Subsequently, on 8 December, 2020, 272 days after COVID-19 
was declared a global pandemic, vaccination started in the United 
Kingdom [43]. Since then, as of 4 February, over 61.34% of the 
world population has received at least one dose of a COVID-19 
vaccine, and 21.54 million doses of vaccines are administered daily 
around the world [44]. However, since then new variants of the 
SARS-CoV-2 virus have appeared. These variants have different 

transmissibility rates, fatality, and morbidity. Furthermore, existing 
vaccines have differing efficacy levels against these emerging vari-
ants [45,46]. Governments must make decisions and revise poli-
cies while considering these new developments like the impact of 
vaccinations and emerging variants on the spread of COVID-19. 
However, statistical and deep-learning models would require real 
data in substantial amounts to perform any forecasting or predic-
tion. On the other hand, these new developments can easily be 
modeled with little or no data with mathematical models. 

For the Korean COVID-19 situation, many models were em-
ployed to forecast the future COVID-19 situation in the country 
amidst government social distancing policies. One paper used the 
SIR model with time-dependent parameters and deep learning to 
forecast the spread of COVID-19 in South Korea [47]. Another 
analysis utilized the SIR model with breakpoint information that 
allows change in transmission rate at the breakpoints was estab-
lished [48]. Other uses of the SIR model or its modification used 
for the Korean population are found elsewhere [49-53]. A modifi-
cation of the SEIR model that considers transmission rates be-
tween age groups and vaccination was also formulated for the Ko-
rean population [54]. In this model, five additional groups; quar-
antined Q, unprotected U, vaccinated V, protected P, and deceased 
D were added to the standard SEIR model making it the SEIQRD-
VUP model. 

Since the SARS-CoV-2 virus is an RNA virus and lacks the mis-
match repair mechanism, the virus replication process is accom-
panied by a high mutation rate, hence the rise of variants [55]. 
Common mutant variants include B.1.1.7, B.1.351, B.1.1.28.1, 
B.1.617.2 (Delta), and B.1.1.529 (omicron), which have all spread 
rapidly worldwide. The mutations make the virus more conta-
gious (fast-spreading) and difficult to eliminate [56]. However, 
the SEIQRDVUP model and other previous  methods cannot 
catch the sudden increase in daily cases caused by newer variants 
with higher transmission rates compared to a previously domi-
nant variant. 

To solve this limitation, we formulated a modification of the 
SEIQRDVUP model to consider a weighted sum of delta and 
omicron variants’ transmission rates based on variants’ propor-
tions together. In addition, three vaccination levels (only one dose 
received, full doses received, and full doses+booster shots re-
ceived) were considered by adding three more compartments of 
vaccination (V1, V2, and V3) and the removal of the above-men-
tioned U compartment due to the use of a transmission rate that 
includes the effect of vaccine efficacy thereby eliminating the inef-
fectively vaccinated group, U. So, the omicron variant’s effect was 
contemplated as a weighted sum of the delta and omicron variants’ 
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transmission rate. In this case, the omicron variant’s transmission 
rate is assumed to be a multiple of the delta’s transmission rate, as 
explained in detail in the Methods section. This study aims to ex-
amine how the omicron variant will affect the COVID-19 situa-
tion in Korea with our proposed SEIRQDVP and SEIRQDV3P 
models. The SEIQRDVP considers only one vaccination level at a 
time using only one vaccination compartment. However, the 
SEIQRDV3P considers all three vaccination levels simultaneously. 

Methods 

Proposed SEIQRDVP and SEIQRDV3P models 
Mathematical methods can be used for the prediction and fore-
casting of COVID-19 transmission [57-60]. Here, we proposed 
the SEIQRDVP model, and its flowchart is shown in Fig. 1 below. 
The susceptible group S is the group of unvaccinated and uninfect-
ed people that can still be infected by the infectious group. The 
vaccinated group V is a group of people vaccinated and can still be 
infected by the infectious group but with a lower transmission rate. 
In this case, the efficacy of the vaccine is multiplied by the trans-
mission rate. If a host in S or V group gets infected, this host be-
comes a host of the exposed group, E. After the incubation period, 
a host of E can infect S or V groups, which means that a host of E 
becomes a host of I, the infectious group. When a host of I is deter-
mined to be infected, a host will be isolated and becomes a host of 

an isolated group, Q, and loses the ability to infect others. An iso-
lated host will be recovered or be dead and moves to group R or D, 
which are the recovered group and deceased group. Group P is the 
insusceptible group that has immunity. The following differential 
equations represent the SEIQRDVP model:  

Fig. 1. Flowchart of SEIQRDVP model.

N=S+E+I+Q+R+V+P.

dI
dt

= κE–αI,

dQ
dt

= αI – γQ,

dR
dt

= (1 – f )γQ,

dD
dt

=  fγQ,

dP
dt

= ωV,

dS
dt

= –BS  – v,
1
N

dE
dt

= β(S+(1–e)V)  – κE,
1
N

dV
dt

= v–(1–e)βV – ωV,
1
N

Table 1. Previously determined model parameters

Parameter Description Value
1/κ The average duration from E to I 4.1 days [64-66]
1/α The average duration from I to Q 6 days [64,65]
1/γ The average duration from Q to R or D 20.1 days [67]
f Mortality rate 0.09 [68]
e Efficacy of vaccination 0.78 [69]

where β is the transmission rate, e is vaccine efficacy, f is the 
mortality rate, α,γ,k and w are the duration periods from respective 
previous compartment to the next compartment, N is the total 
population, and γ is the isolation duration. Previously determined 
model parameters from literature, κ,α,γ,f,e, and used in our analysis 
are listed in Table 1. We assumed that the vaccinated host gets im-
munity 42 days after their first vaccination which means that 1/ω 
is assumed to be 42 [57]. In Fig. 1, v is provided by daily vaccinat-
ed cases. Consequently, the remaining parameter β is the only un-
known parameter estimated by the least-squares method. This 
process is done using Runge-Kutta fourth-order method and the 
lsqcurvefit toolbox in MATLAB [61]. In addition, the daily cases 
are divided into segments with the breakpoints of these segments 
being determined from the changing levels of the stringency index 
due to changing government policies. The stringency index was 
obtained from the Oxford COVID-19 Government Response 
Tracker (OxCGRT) dataset from the Blavatnik School of Govern-
ment and the University of Oxford [62,63]. β was estimated for 
each segment independent of other segments, therefore our pro-
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posed model included stringency index as a covariate. 
Moreover, the vaccination group can be divided into three: vacci-

nated (first vaccination), fully vaccinated (second vaccination), and 
boosted (third vaccination). We call the model that fits the three 
vaccination levels simultaneously, the SEIQRDV3P model, and its 
flowchart is shown in Fig. 2. In this model, v1,v2,v3 are provided by 
daily vaccinated, daily fully vaccinated, and daily boosted cases. 
Also, the efficacy of vaccination for each vaccination group is differ-
ently provided with e1, e2, e3 and values are 0.75, 0.80, 0.85 [69]. 

Lastly, the proportion of omicron variants was reflected in the 
above model as a change in transmission rate, β. With a transmis-
sion rate of delta variant as βD and transmission rate of omicron 
variant as βO, we assumed that βO is multiple of βD, which means 
βO = kβD with hyperparameter k. In our cases, we tried 1, 3, 5, and 
7 as a value of the hyperparameter k, to track the recent rapid in-
crease of the omicron variant. The proportion of the omicron vari-
ant in the population is modeled by the parameter w. The values of 
w lie between 0 and 1. The time-series variation of this parameter 
is known for both train and test data, but its variation for the com-
ing days is unknown. So, a logistic function was fitted to predict 
the future behavior of w. Using past data on the proportion of the 
omicron variant, the logistic function of the proportion of the 
omicron variant against time was fitted by the least square method. 
Combining these results altogether, the final transmission rate be-
came βOw+βD(1–w) which can be simplified as βD{1+(k–1)w}. 
Since k and w are constants, the only parameter estimated is βD, 
and was estimated by the same method as the above models. 

Data 
Information of daily cases, deaths, and the three vaccination levels 
used in the analysis was obtained from the Our World in Data web-
site [70]. The daily recovered data is obtained from a web-based 
dashboard tracker of COVID-19 hosted by the Center for Systems 
Science and Engineering (CSSE) at Johns Hopkins University 

[71]. The proportion of cases because of the omicron variant was 
gotten from GISAID, an Initiative dedicated to the tracking of vi-
rus variants from the influenza viruses and coronavirus [72,73]. 
This data was divided into train and test data. The training period 
was chosen from 20 September 2021 to 28 January 2022 since 
from this date (2021 September 20), the proportion of cases of 
delta variant had exceeded 90% of the cases. The test data period 
for prediction was from 29 January 2022 to 4 February 2022. 

Results 

SEIQRDVP and SEIQRDV3P models 
Modifications of the basic SEIR model to the SEIQR model, to 
the SEIQRDVUP model, and then to our proposed SEIQRDVP 
and SEIQRDV3P models were done and the models’ performanc-
es were compared. For each model, using train data, time-depen-
dent β(t) using the different models were estimated by the least-
squares method (LSE). SEIQR, SEIQRDVUP, and SEIQRDVP 
models’ results showed similar fitting with our proposed SEIQRD-
V3P model. We observed that except for the basic SEIR model 
and our SEIQRDV3P model, the other models had similar daily 
cases fitted curves. 

Using test data, the prediction error of each model using actual 
confirmed cases and predicted confirmed cases from models was 
determined using root mean square error (RMSE). RMSE values 
for the SEIR, SEIQR, SEIQRDVUP, SEIQRDVP, and SEIQRD-
V3P models were calculated as 11,235, 5,079, 5,116, 5,115, and 
5,101, respectively, as shown in Table 2. A general decrease in 
RMSE values with an increase in model complexity is observed. 
However, the difference in RMSE between SEIQR to SEIQRD-
V3P models is way smaller than the difference between SEIQR 
and SEIR models.  

Effect of omicron variant 
From the above result, SEIQRDV3P and SEIQR models had the 

Fig. 2. Flowchart of SEIQRDV3P model. Parameters for V1,V2,V3 to E 
are (1-e1)β, (1-e2)β,(1-e3)β like Fig. 1.

Table 2. RMSE values for each models and at different different k 
(SEIQRDV3P)

Model RMSE k (SEIQRDV3P) RMSE
SEIR 11,235.23 1 5,101.342
SEIQR 5,079.369 3 4,583.178
SEIQRDVUP 5,116.04 5 4,200.31
SEIQRDVP 5,115.755 7 3,705.078
SEIQRDV3P 5,101.342 - -
RMS - - -

RMSE, root mean square error.
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lowest but almost similar prediction errors, despite large differenc-
es in the model structure. This could be because of the recent omi-
cron situation in Korea. As transmissibility between the delta vari-
ant, which was originally dominant in Korea, and the omicron 
variant which is now the dominant variant differ greatly. The 
SEIQRDV3P model which considers three vaccination levels si-
multaneously was updated to reflect the different effects of each 
variant due to their different transmissibility rate. Using train data, 
time-dependent βD(t) was estimated by the LSE method. In this 
case, hyperparameter k was chosen as 3, 5, 7, which means that the 
transmission rate of the omicron is 3, 5, 7 times of transmission 
rate of the delta. For each selected k, the best fitted daily cases 
curves are shown in Fig. 3. The model with k = 1 corresponds to 
the original SEIQRDV3P model. The x-axis (time) includes both 
the training and testing period. 

Also, RMSE values for each case were calculated as 5,101, 4,583, 
4,200, and 3,705 for each value of hyperparameter k (1, 3, 5, and 
7). As we include the effect of the omicron variant in the SEIQRD-
V3P model, we can observe the dramatic decrease in RMSE val-
ues. Also, RMSE values decreased as the hyperparameter k in-
creased, as shown in Table 2. This result implies that in a short pe-
riod, the omicron variant shows way larger transmissibility than 
the delta variant. Seven days’ prediction after the test data period, 
which is 5 February 2022 to 11 February 2022, is shown in Fig. 4. 

Discussion 

Since the onset of the global COVID-19 pandemic, mathematical 
models have been at the forefront of forecasting the future pan-
demic situation hence policymaking by government bodies. Math-
ematical models are highly flexible and the impact of different sce-
narios on the transmission of COVID-19 can be incorporated and 
predicted, even with the unavailability of data. The mathematical 
compartmental SEIR model and many of its modifications have 
been developed. 

Governments must revise their testing protocols, social distanc-
ing policies, and healthcare protocols with the emergence of each 
new variant, hence the need of modeling the impact of each 
emerging variant on the spread of COVID-19. Here, we proposed 
a modification of the published SEIQRDVUP model, the 
SEIQRDVP model which considers one vaccination group at a 
time, and the SEIQRDV3P model which models the 3 vaccination 
levels simultaneously and the impact of the omicron variant. 
SEIQRDVP and SEIQRDV3P models’ performance were com-
pared to SEIQRDVUP and other known compartmental mathe-
matical models SEIR and SEIQR models. Firstly, without consid-
ering the omicron variant rate, our SEIQRDV3P model doesn’t 
show much difference from other models contrasted here. This re-
sult implies that the SEIQRDV3P model cannot predict a rapid 

Fig. 3. Fitted and predicted daily cases’ curves using the SEIQRDV3P model for different omicron transmission rates k = 1,3,5,7. The time 
axis combines both train and test data periods, ranging is from 20 September 2021 to 4 February 2022.
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increase in daily COVID-19 cases without a previous increasing 
daily case pattern. 

However, using a hyperparameter and a weighted sum of trans-
mission rates between two variants, we were able to predict the 
rapid increase caused by the omicron variant. Omicron rate con-
sidering weighted sum lowers the prediction error of the SEIQRD-
V3P model from 5,101.342 to 3,705.078 which is 27.4% less than 
the SEIQRDVUP model. Since the omicron variant has a way 
larger transmission rate than delta or other previously known vari-
ants, it seems that daily incidences will keep increasing until herd 
immunity for the omicron variant is formed in the population. 

However, from January 2022, daily deaths, as well as severity, 
seem to have decreased considerably. This pattern can imply the 
low risk and mortality associated with the omicron variant com-
pared to the delta variant, or the impact of vaccination on the pop-
ulation. Therefore, before implementing the ‘Living with 
COVID-19’ policy in Korea [74], the prediction of deceased and 
serious patient cases should be preceded. This work can be done 
by developing the mortality rate in the SEIQRDV3P model to also 
consider the omicron variant’s mortality with the weighted sum 
method. 

Considering that each variant has its different transmissibility 
rates, fatality, impact on vaccine efficacy, and morbidity, this gener-
ates different model parameter values making it difficult to model 

all current variants in one model. Therefore, each variant would 
require its model. Currently, using different model parameters for 
each variant remained a limitation of this study which we try to 
solve in the future. Also, SARS-CoV-2 has been known to affect 
age groups differently. Furthermore, the impact of variant and vac-
cination policies across different age groups of the population will 
be considered in our future studies. 

With the appearance of new COVID-19 variants appearing after 
a few months, the fight to end the spread of SARS-CoV-2 even 
with vaccination has been greatly challenged. These new variants 
have a different fatality, transmission rate, and efficacy from cur-
rently available vaccines. Therefore, their effect on daily cases, 
deaths, and implemented non-pharmacological policies is of inter-
est to governments and scientists. With the proposed SEIQRD-
V3P model we found out the new omicron variant will cause a 
rapid rise in COVID-19 cases in South Korea for some time until 
herd immunity is developed in the population. 
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Fig. 4. Forecasting of daily cases of Korea after test data, 5 February 2022 to 11 February 2022.
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