• Title/Summary/Keyword: mathematical optimization problem

Search Result 351, Processing Time 0.027 seconds

Recent Reseach in Simulation Optimization

  • 이영해
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1994.10a
    • /
    • pp.1-2
    • /
    • 1994
  • With the prevalence of computers in modern organizations, simulation is receiving more atention as an effectvie decision -making tool. Simualtion is a computer-based numerical technique which uses mathmatical and logical models to approximate the behaviror of a real-world system. However, iptimization of synamic stochastic systems often defy analytical and algorithmic soluions. Although a simulation approach is often free fo the liminting assumption s of mathematical modeling, cost and time consiceration s make simulation the henayst's last resort. Therefore, whenever possible, analytical and algorithmica solutions are favored over simulation. This paper discussed the issues and procedrues for using simulation as a tool for optimization of stochastic complex systems that are dmodeled by computer simulation . Its emphasis is mostly on issues that are speicific to simulation optimization instead of consentrating on the general optimizationand mathematical programming techniques . A simulation optimization problem is an optimization problem where the objective function. constraints, or both are response that can only be evauated by computer simulation. As such, these functions are only implicit functions of decision parameters of the system, and often stochastic in nature as well. Most of optimization techniqes can be classified as single or multiple-resoneses techniques . The optimization of single response functins has been researched extensively and consists of many techniques. In the single response category, these strategies are gradient based search techniques, stochastic approximate techniques, response surface techniques, and heuristic search techniques. In the multiple response categroy, there are basically five distinct strategies for treating the responses and finding the optimum solution. These strategies are graphica techniqes, direct search techniques, constrained optimization techniques, unconstrained optimization techniques, and goal programming techniques. The choice of theprocedreu to employ in simulation optimization depends on the analyst and the problem to be solved. For many practival and industrial optimization problems where some or all of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computersimulation is one of the most effective means of studying such complex systems. In this paper, after discussion of simulation optmization techniques, the applications of above techniques will be presented in the modeling process of many flexible manufacturing systems.

  • PDF

Mathematical Optimization Techniques in Drug Product Design and Process Analysis. Optimization Techniques in Tablet Design (의약품 제조설계 및 조작분석의 최적화에 관한 연구 - 정제제조의 최적화)

  • 김용배
    • YAKHAK HOEJI
    • /
    • v.18 no.1
    • /
    • pp.49-58
    • /
    • 1974
  • Tablet product design problem was structured as constrained optimization problem and subsequently solved by multiple regression analysis and Lagrangian method of optimization. Aluminum flufenamate was the drug chosen and microcrystalline cellulose nad starch were the binder and disintegrant, respectivley. The effect of the binder and disintegrant concentration on tablet hardness, friability, volume, in vitro release rate, and urinary excretion rate of drug in human subjects was recorded. Since a reasonably rapid release rate of drug is generally an important objective in the design of solid dosage form, optimization of this parameter was employed in studying the applicability of constrained optimization to a pharmaceutical product design problem. In addition to finding optimal sitivity analysis studies to such problems was also illustratd. It would appear that prediction of the in vivo t$_{50%}$ response from a knowledge of the incitro t$_{50%}$ response can be made fairly accurately for the tablet system used in this study.

  • PDF

Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity

  • Azizi, Mohamed Walid;Keblouti, Ouahid;Boulanouar, Lakhdar;Yallese, Mohamed Athmane
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.501-513
    • /
    • 2020
  • In the present work, the optimization of machining parameters to achieve the desired technological parameters such as surface roughness, tool radial vibration and material removal rate have been carried out using response surface methodology (RSM). The hard turning of EN19 alloy steel with coated carbide (GC3015) cutting tools was studied. The main problem faced in manufacturer of hard and high precision components is the selection of optimum combination of cutting parameters for achieving required quality of surface finish with maximum production rate. This problem can be solved by development of mathematical model and execution of experiments by RSM. A face centred central composite design (FCCD), which comes under the RSM approach, with cutting parameters (cutting speed, feed rate and depth of cut) was used for statistical analysis. A second-order regression model were developed to correlate the cutting parameters with surface roughness, tool vibration and material removal rate. Consequently, numerical and graphical optimization were performed to obtain the most appropriate cutting parameters to produce the lowest surface roughness with minimal tool vibration and maximum material removal rate using desirability function approach. Finally, confirmation experiments were performed to verify the pertinence of the developed mathematical models.

Performance Evaluation and Parametric Study of MGA in the Solution of Mathematical Optimization Problems (수학적 최적화 문제를 이용한 MGA의 성능평가 및 매개변수 연구)

  • Cho, Hyun-Man;Lee, Hyun-Jin;Ryu, Yeon-Sun;Kim, Jeong-Tae;Na, Won-Bae;Lim, Dong-Joo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.416-421
    • /
    • 2008
  • A Metropolis genetic algorithm (MGA) is a newly-developed hybrid algorithm combining simple genetic algorithm (SGA) and simulated annealing (SA). In the algorithm, favorable features of Metropolis criterion of SA are incorporated in the reproduction operations of SGA. This way, MGA alleviates the disadvantages of finding imprecise solution in SGA and time-consuming computation in SA. It has been successfully applied and the efficiency has been verified for the practical structural design optimization. However, applicability of MGA for the wider range of problems should be rigorously proved through the solution of mathematical optimization problems. Thus, performances of MGA for the typical mathematical problems are investigated and compared with those of conventional algorithms such as SGA, micro genetic algorithm (${\mu}GA$), and SA. And, for better application of MGA, the effects of acceptance level are also presented. From numerical Study, it is again verified that MGA is more efficient and robust than SA, SGA and ${\mu}GA$ in the solution of mathematical optimization problems having various features.

  • PDF

Robust Capacity Planning in Network Coding under Demand Uncertainty

  • Ghasvari, Hossien;Raayatpanah, Mohammad Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2840-2853
    • /
    • 2015
  • A major challenge in network service providers is to provide adequate resources in service level agreements based on forecasts of future demands. In this paper, we address the problem of capacity provisioning in a network subject to demand uncertainty such that a network coded multicast is applied as the data delivery mechanism with limited budget to purchase extra capacity. We address some particular type of uncertainty sets that obtain a tractable constrained capacity provisioning problem. For this reason, we first formulate a mathematical model for the problem under uncertain demand. Then, a robust optimization model is proposed for the problem to optimize the worst-case system performance. The robustness and effectiveness of the developed model are demonstrated by numerical results. The robust solution achieves more than 10% reduction and is better than the deterministic solution in the worst case.

On the numerical assessment of the separation zones in semirigid column base plate connections

  • Baniotopoulos, C.C.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.295-309
    • /
    • 1994
  • The present paper concerns the mathematical study and the numerical treatment of the problem of semirigid connections in bolted steel column base plates by taking into account the possibility of appearance of separation phenomena on the contact surface under certain loading conditions. In order to obtain a convenient discrete form to simulate the structural behaviour of a steel column base plate, the continuous contact problem is first formulated as a variational inequality problem or, equivalently, as a quadratic programming problem. By applying an appropriate finite element scheme, the discrete problem is formulated as a quadratic optimization problem which expresses, from the standpoint of Mechanics, the principle of minimum potential energy of the semirigid connection at the state of equilibrium. For the numerical treatment of this problem, two effective and easy-to-use solution strategies based on quadratic optimization algorithms are proposed. This technique is illustrated by means of a numerical application.

A Study on the Optimization Problem Solving utilizing the Quadratic Curve using the Dynamic Geometry Software (동적기하프로그램을 활용한 이차곡선 최적화 문제해결에 관한 연구)

  • Kim, Jung Soo;Jeon, Bo Hyun;Chung, Young Woo;Kim, Boo Yoon;Lee, Yan
    • East Asian mathematical journal
    • /
    • v.30 no.2
    • /
    • pp.149-172
    • /
    • 2014
  • The problems of optimization addressed in the high school curriculum are usually posed in real-life contexts. However, because of the instructional purposes, problems are artificially constructed to suit computation, rather than to reflect real-life problems. Those problems have thus limited use for teaching 'practicalities', which is one of the goals of mathematics education. This study, by utilizing 'GeoGebra', suggests the optimization problem solving related to the quadratic curve, using the contour-line method which contemplates the quadratic curve changes successively. By considering more realistic situations to supplement the limit which deals only with numerical and algebraic approach, this attempt will help students to be aware of the usefulness of mathematics, and to develop interests in mathematics, as well as foster students' integrated thinking abilities across units. And this allows students to experience a variety of math.

Multi-objective Optimization in Discrete Design Space using the Design of Experiment and the Mathematical Programming (실험계획법과 수리적방법을 이용한 이산설계 공간에서의 다목적 최적설계)

  • Lee, Dong-Woo;Baek, Seok-Heum;Lee, Kyoung-Young;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2150-2158
    • /
    • 2002
  • A recent research and development has the requirement for the optimization to shorten design time of modified or new product model and to obtain more precise engineering solution. General optimization problem must consider many conflicted objective functions simultaneously. Multi-objective optimization treats the multiple objective functions and constraints with design change. But, real engineering problem doesn't describe accurate constraint and objective function owing to the limit of representation. Therefore this study applies variance analysis on the basis of structure analysis and DOE to the vertical roller mill fur portland cement and proposed statistical design model to evaluate the effect of structural modification with design change by performing practical multi-objective optimization considering mass, stress and deflection.

Optimum Sensitivity of Objective Function Using Equality Constraint (등제한조건을 이용한 목적함수에 대한 최적민감도)

  • Shin Jung-Kyu;Lee Sang-Il;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1629-1637
    • /
    • 2005
  • Optimum sensitivity analysis (OSA) is the process to find the sensitivity of optimum solution with respect to the parameter in the optimization problem. The prevalent OSA methods calculate the optimum sensitivity as a post-processing. In this research, a simple technique is proposed to obtain optimum sensitivity as a result of the original optimization problem, provided that the optimum sensitivity of objective function is required. The parameters are considered as additional design variables in the original optimization problem. And then, it is endowed with equality constraints to penalize the additional variables. When the optimization problem is solved, the optimum sensitivity of objective function is simultaneously obtained as Lagrange multiplier. Several mathematical and engineering examples are solved to show the applicability and efficiency of the method compared to other OSA ones.

Optimum Sensitivity of Objective Function using Equality Constraint (등제한조건을 이용한 목적함수에 대한 최적민감도)

  • Yi S.I.;Shin J.K.;Park G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.464-469
    • /
    • 2005
  • Optimum sensitivity analysis (OSA) is the process to find the sensitivity of optimum solution with respect to the parameter in the optimization problem. The prevalent OSA methods calculate the optimum sensitivity as a post-processing. In this research, a simple technique is proposed to obtain optimum sensitivity as a result of the original optimization problem, provided that the optimum sensitivity of objective function is required. The parameters are considered as additional design variables in the original optimization problem. And then, it is endowed with equality constraints to penalize the additional variables. When the optimization problem is solved, the optimum sensitivity of objective function is simultaneously obtained as Lagrange multiplier. Several mathematical and engineering examples are solved to show the applicability and efficiency of the method compared to other OSA ones.

  • PDF