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Abstract 
 

A major challenge in network service providers is to provide adequate resources in service 
level agreements based on forecasts of future demands. In this paper, we address the problem 
of capacity provisioning in a network subject to demand uncertainty such that a network coded 
multicast is applied as the data delivery mechanism with limited budget to purchase extra 
capacity. We address some particular type of uncertainty sets that obtain a tractable 
constrained capacity provisioning problem. For this reason, we first formulate a mathematical 
model for the problem under uncertain demand. Then, a robust optimization model is 
proposed for the problem to optimize the worst-case system performance. The robustness and 
effectiveness of the developed model are demonstrated by numerical results. The robust 
solution achieves more than 10% reduction and is better than the deterministic solution in the 
worst case. 
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1. Introduction 

Network coding generalizes traditional routing paradigm in which nodes are allowed to 
perform arbitrary operation on information received to generate output. Recent developments 
in network technology have caused many content providers offering data dissemination 
services. One of the most important strategies for these content providers is to determine 
resource requirements with respect to uncertain demands. Over-provisioning leads to wasted 
resources and unnecessary payments, while under-provisioning results in potentially 
prohibitive additional charges. Hence, the content provider should consider a cost balancing 
procedure, based on forecasts of expected customer usage patterns and demands. As demand 
is not completely pre-determined, the content provider should resort to forecast based on 
marketing reports or historical usage patterns when making decisions. 

In this paper, we consider the capacity provisioning problem where (1) the content 
provider employs multicast network with coded packets as its underlying data dissemination 
method, (2) demand from receivers is uncertain, and (3) the total costs of extra capacity 
purchased should not exceed a given budget level. We present a robust optimization model for 
capacity planning when faced with uncertain demands. It is assumed that uncertain demands 
belong to a closed, convex, independent, and bounded uncertainty set. We address some 
particular type of uncertainty sets that obtain a tractable constrained capacity provisioning 
problem. 

The structure of the paper is as follows: In the next section, after introducing notations used 
in this paper, the standard formulation for minimum cost multicast whit network coding is 
presented. In Section 3, we present the robust optimization model adapted for the constrained 
capacity provisioning problem. In addition, after considering types of uncertainty sets, 
conditions for solving the constrained capacity provisioning problem efficiently are identified. 
We present our numerical results in Section 4, and finally present concluding remarks. 

2. Related Work 
Network coding is a promising generalization of routing, which allows a network node to 
generate output messages by encoding its received messages to improve the throughput, 
robustness, and security. Ahlswede et al.  [1] shown that network coding is able to achieve the 
maximum flow/ minimum-cut bound on the multicast capacity. Li et al.  [2] proved that linear 
coding achieves an optimal throughput of a multicast capacity, and later,  Erez, et al.  [3] 
proposed a distributed linear code construction for the deterministic wireless multicast relay 
network model. A new network coding signature scheme is proposed to solve vulnerable to 
pollution attacks where malicious node(s) can flood the network with invalid packets and 
prevent the receiver from the right decoding in  [4]. Wu et al.  [5] constructed a  coding scheme 
to realize the maximum multicast transportation task. They proposed  a dynamic coding and 
routing algorithm to route packets gradually from source node to destinations. Lun et al.  [6] 
presented a  linear optimization formulation to find a minimum-cost multicast over coded 
packet networks. A set of distributed solutions for optimizing the configuration of network 
coding in both wireline and wireless networks is provided in  [7]. Raayatpanah et al.  [8] 
proposed a mixed integer linear programming  to establish Minimum cost multiple multicast 
network coding with quantized rates. Moreover, the quality of service requirements with 
network coding considered works  [9-11]. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Erez,%20E..QT.&newsearch=true
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One of the most issues for the content providers is determining resource requirements with 
respect to uncertain demands. The uncertainty of the future demand implies that forecasts of 
expected customer usage patterns and demands should be balanced against the cost for the 
initial provisioning process. Sen et al.  [12] proposed a network planning mechanism with 
random demand. They employed a sampling-based algorithm for capacity planning in the face 
of uncertain demands. Gopinathan et al.  [13], presented a two-stage stochastic optimization 
model for the capacity provisioning problem. They designed two approximation algorithms to 
solve the problem. A stochastic optimization method usually starts by assuming the 
uncertainty has a probabilistic description, while in most applications the distributions of 
uncertain parameters are not known due to insufficient information. There are several reasons 
for this situation, such as measurement and forecasting errors. A better strategy in the 
problems with uncertainty can be solutions that are not optimal for a given value of the 
parameters but are efficient for all possible uncertainty outcomes; that is, they are robust. The 
concept of robust optimization was first introduced by Soyster  [14]. He discussed uncertain 
hard constraints in linear programming models. Ben-Tal and Nemirovski  [15] and El Ghaoui 
et al.  [16] addressed this topic by allowing uncertainty sets for the data to be conic set, which 
includes bounded polyhedral and ellipsoid. Bertsimas and Sim  [17] proposed a different 
approach to control the level of conservatism in a solution that leads to a linear optimization 
model. 

3. Problem Definition 

3.1 Preliminary 

A communication network is represented by a directed graph = ( , ),G V A  where V  is the set 
of nodes and A  is the set of arcs in .G  Each arc = ( , )e i j  represents a lossless 
point-to-point arc from node i  to node .j  For arc = ( , ),e i j  we will have head(e) =  j  and 
tail(e) = i. For node ,i V∈  terms iδ

+  and iδ
−  denote the set of arcs leaving node i (tail(e) = i) 

and entering node i (head(e) = i), respectively. Let ez  denote the rate in which coded packets 
are injected on arc .e  Transmit cost ec  denotes the cost per unit rate of sending coded packets 
over arc .e  The capacity of arc e  is denoted by eu and defined to be the number of packets 
that can be sent over arc e  in one time unit. We assume that arc capacities are nonnegative 
integer numbers. A single session multicast is considered in this paper, where a source node, 
s V∈ , must transmit an integer number of R  packets per unit time to every terminal in a set 
of 1 2{ , ,..., }rT t t t V= ⊆  terminals. Let = {1,2,... }K r  be the set index of .T  Define k

ex  to 
be the flow of packets on arc e  towards receiver .kt  

Employing network coding enables an optimal multicast flow to be computed in 
polynomial time  [6]. A fundamental result of network coding states that a multicast rate of R  
is feasible if and only if it is a feasible unicast rate from source to each receiver separately  [1]. 
A direct consequence is that efficient multicast can be viewed as the union of conceptual 
unicast flows from source to every receiver  [18]. The minimum cost multicast with network 
coding is then given by the following optimization problem  [11]: 

min e e
e A

c z
∈
∑  
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                                                     . .s t                                                          (1) 
0 , , ,k

e ex z e A k K≤ ≤ ∀ ∈ ∀ ∈                                     (1.1) 

= , , ,k k k
e e i

e ei i

x x i V k K
δ δ

σ
+ −∈ ∈

− ∀ ∈ ∀ ∈∑ ∑                                    (2.1) 

, ,e ez u e A≤ ∀ ∈                                 (3.1) 

where  
, = ,

= , = ,
0 .

k
i k

R if i s
R if i t

otherwise
σ


−



 

Constraint (1.1) is the rate of coded packets on each arc e that is the maximum of all flow 
packets using that arc i.e., = ( ).k

e k ez max x  Constraint (2.1) states the flow conservation in 
nodes that all multicast receivers should have a flow rate of .R  Finally, the flow on each arc 
must respect capacity constraints, as stated in Constraint (3.1). 

The above model can be written in matrix form as follows: 
min CZ  

. .s t                                             (2) 
0 , ,kX Z k K≤ ≤ ∀ ∈  

= , ,k kNX k Kσ ∀ ∈  
,Z U≤  

 
where N  is the node-arc incidence matrix. 
As an example, consider the network depicted in Fig. 1. All arcs have unit capacity and the 

cost per unit rate shown beside each link. The target of the deterministic multicast rate is 1 
from s  to two receivers, 1t  and 2.t  An optimal solution to Problem 1 for this network is 
shown in Fig. 2. We have the rate of coded packets on each arc ( , ),i j  1 2= ( , )ij k ij ijz max x x , as 

we expect from the Constraint (1.1). The total cost multicast with network coding in this case is 
19 .
2

 Without network coding, the cheapest routing scheme incurs a cost of 10,  that shows 

routing using network coding incurs a cheaper cost in general than routing without network 
coding.  
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In next subsection, we formulate the minimum cost coding subgraph problem with the 
uncertain rate of R and a limited budget to purchase extra capacity. 

3.2 Robust Modeling 
In this section, we formulate a model for the constrained capacity provisioning problem 
assuming that the transmit rate R  belongs to a given uncertainty set. The total cost of extra 
capacity purchased is bounded by a certain amount of available budget, .D  These 
assumptions lead to the following optimization problem under uncertainty transmit rate. 

min e e
e A

c z
∈
∑  

. .s t                                                               (3) 
0 , , ,k

e ex z e A k K≤ ≤ ∀ ∈ ∀ ∈  

= , , ,k k k
e e i

e ei i

x x i V k K
δ δ

σ
+ −∈ ∈

− ∀ ∈ ∀ ∈∑ ∑  

, ,e e ez u w e A≤ + ∀ ∈  

,e e
e A

w d D
∈

≤∑  
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Fig. 1. A network with multicast from s to 1 2{t , t }.  Each link is marked with its cost. 

Fig. 2. Each arc is marked with the triple 1 2( , , )ij ij ijz x x  
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0, ,ew e A≥ ∀ ∈  

 

where ew  is the extra capacity purchased on arc ,e  and ed  is its unit cost. The uncertainty 
parameter R  belongs to the closed bounded and convex uncertainty set .RU  

The robust solution is defined as the solution that achieves the best worst-case objective 
function value. Therefore, such solution can be obtained by solving the following robust 
counterpart problem: 

 
 

= min ( )RC e e
e A

Z c z RC
∈
∑  

. .s t                                               (4) 
0 , , ,k

e ex z e A k K≤ ≤ ∀ ∈ ∀ ∈  

= , , , ,k k k
e e i R

e ei i

x x i V k K R U
δ δ

σ
+ −∈ ∈

− ∀ ∈ ∀ ∈ ∀ ∈∑ ∑  

, ,e e ez u w e A≤ + ∀ ∈  

,e e
e A

w d D
∈

≤∑  

0, .ew e A≥ ∀ ∈  
 

The robust counterpart of the stochastic problem with recourse, is the so-called adjusted 
robust counterpart problem (ARC), introduced in  [19]. Assume that set RU  is closed, convex, 

and bounded. Given such uncertainty, it is natural to separate decision variables , ,kX Z  and  
W  make the decision on variables W  prior to observing the traffic conditions (realizations of 
R  ), and finally, let the coded packet rate, ,Z adapt to these conditions. Thus, our problem is 
a stochastic problem with recourse and the adjusted robust counterpart problem is obtained by:  

 
= min ( )ARCZ ARCγ  

. .s t                                                                 (5) 
,e e

e A
w d D

∈

≤∑  

0, ,ew e A≥ ∀ ∈  

, :Rfor all R U there exists Z and X∈  
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0 , , ,
= , ,

, ,
.

k
e e
k k k
e e i

e ei i

e e e

e e
e A

x z e A k K
x x i V

z u w e A
c z

δ δ

σ

γ

+ −∈ ∈

∈

 ≤ ≤ ∀ ∈ ∀ ∈
 − ∀ ∈

 ≤ + ∀ ∈


≤



∑ ∑

∑
 

 

For the feasibility of the above problem, we have assumed that for all RR U∈ , there exists 
values of Z  and X  such that the constraints are satisfied. Note that ARC is an extension of 
RC and it is evident that .ARC RCZ Z≤  

Lemma 1. Adjusted robust counterpart problem, (5), is equivalent to Problem (6) below, 
and both problems have the same optimal solution W  and = .ARC RZ Z   

 
= maxmin minR e e

w zR U e AR

Z c z
∈ ∈

∑                             (6) 

, . . = , ,k k k
e e e e i

e A e ei i

w d D s t x x i V
δ δ

σ
+ −∈ ∈ ∈

≤ − ∀ ∈∑ ∑ ∑

0, , 0 , , ,k
e e ew e A x z k K e A≥ ∀ ∈ ≤ ≤ ∀ ∈ ∀ ∈

, .e e ez u w e A≤ + ∀ ∈  
 

Proof. For any vector 0W ≥  and RR U∈  let set ( , )F W R  be the set of feasible 
solutions as follows: 

( , ) = { | 0 , , = , , }.k k kF W R Z X Z k K NX k K Z U Wσ≤ ≤ ∀ ∈ ∀ ∈ ≤ +  For all 

RR U∈  there exists ( , )Z F W R∈  and CZ γ≤ . Equivalently, for all ,RR U∈  we have 

( , ) .minZ F W R CZγ ∈≥  In other words, ( , )max minZ F W RR CZγ ∈≥ , which concludes the proof. 
 

In the next section, we concentrate on identifying the conditions on the uncertainty set that 
yield a tractable ARC for the problem. 

3.3 Proposed Solution 
In this section, we present some particular type of uncertainty sets, which lead to a linear 
problem solvable in polynomial time. Depending on a given uncertainty set, we can obtain 
different robust counterpart problems. Ben-Tal and Nemirovski [15] shown that the RC of a 
linear programming (LP) is equivalent to an LP when uncertainty set is a polyhedron and to a 
quadratically constrained convex program when uncertainty set is a bounded ellipsoidal set. 
The uncertainty sets in this work are defined as deviations from a nominal value of the 
uncertain parameter. 
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In first, we define ( )Wψ  as follows:  
 

( ) = max min e e
zR U e AR

W c zψ
∈ ∈

∑                                                (7) 

. . = , ,k k k
e e i

e ei i

s t x x i V
δ δ

σ
+ −∈ ∈

− ∀ ∈∑ ∑  

0 , , ,k
e ex z k K e A≤ ≤ ∀ ∈ ∀ ∈  

, .e e ez u w e A≤ + ∀ ∈  
 

In the following subsections, we identify conditions on uncertainty set RU  under which 
we can evaluate ( )Wψ  efficiently.  

First, we investigate difficulties faced in solving the problem. Let 
( ) = min{ | 0 , = , , },k k kZ R CZ X Z NX k K Z U Wσ≤ ≤ ∀ ∈ ≤ +  which denote the value 

of this LP as a function of the right-hand-side parameter R . It is well-known that the objective 
function ( )Z R  is a piecewise linear convex function of R  on set RU  [20]. Therefore, in 
general, the problem ( )maxR U R

Z R∈  is intractable since RU  is convex. However, as will be 

shown, the multicast problem with special structure of RU  is tractable. 

Lets define RU  such that ( )maxR U R
Z R∈  is unique, and 0R  and , = 1, 2, ,lR l L  

denote the nominal data and basic shift, respectively. 

Case 1. 0 0= { | }R l uU R R R Rδ δ− ≤ ≤ +  where , 0l uδ δ ≥  and 0 0.lR δ− ≥  

In this case, 0
uR δ+  is maximum element of RU , so implies that 

0( ) = ( )maxR Uu R
Z R Z Rδ ∈+  

Case 2. 0
=1

= { | = , | | 1, , = 1, 2, , }.L
R l l l ll

U R R R R l Lζ ζ ζ+ ≤ ∈∑    

For each RR U∈  we get: 0
=1

| |L
ll

R R R≤ +∑ , so we have:  
0

=1
( | |) = ( )max

L
R Ull R

Z R R Z R∈+∑  

Case 3. 
1

0 2 2
=1 =1

= { | = , ( ) 1, , = 1, 2, , }.L L
R l l l ll l

U R R R R l Lζ ζ ζ+ ≤ ∈∑ ∑     

For each RR U∈  we get: 
1

0 2 2
=1

( )L
ll

R R R≤ + ∑ , so we have:  
1

0 2 2
=1

( ( ) )) = ( )max
L

R Ull R
Z R R Z R∈+ ∑  

Let R  be the optimal solution in cases 1, 2 and 3. Consequently  
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, = ,
= , = ,

0, .

k
i k

R if i s
R if i t

otherwise
σ



−



 

Therefore, we obtain the following linear model, which solved in polynomial time.  
min e e

e A
c z

∈
∑  

. .s t                                             (8) 
0 ,k

e ex z e A k K≤ ≤ ∀ ∈ ∀ ∈  

= , , ,k k k
e e i

e ei i

x x i V k K
δ δ

σ
+ −∈ ∈

− ∀ ∈ ∀ ∈∑ ∑  

, .e e ez u w e A≤ + ∀ ∈  

.e e
e A

w d D
∈

≤∑  

0, .ew e A≥ ∀ ∈  

4. Experimental Classification Results and Analysis 
In this section, we investigate the relative merit of the robust solution in comparison with 
deterministic solution through simulations. Also, the performance of our model was compared 
with the model proposed by Xi and Yeh  [7]. Such comparison is based on the following 
parameters: 
 

ZD : Optimal value of the deterministic solution 
ZR : Optimal value of the robust solution 
ZWC : Objective value of the deterministic solution under its worst-case scenario 
 

ZD  is computed as the optimal value of the objective function of Problem (3) for the 
deterministic multicast rate .R  Let WD  be the optimal extra capacity purchased for the 
deterministic problem. The value ZR  is obtained by solving the appropriate tractable 
characterization of Model (5), which is Model (8). Finally, the worst-case value ZWC  is 
obtained by removing the budget constraint and replacing the extra capacity purchased .WD  
The classic butterfly network is considered as the first scenario. The topology of the butterfly 
network with one source and two receivers is shown in Fig. 3. The nominal transmit cost and 
extra capacity cost are shown on the links of the butterfly network as shown in Fig. 3 (a) and 
(b), respectively. The capacity of each link is assumed to be one unit and the nominal transmit 
rate is 0 = 2R  and set budget, = 9.D  
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Fig. 3. Butterfly network 

 

First, we consider an uncertainty set of transmit rate R  changing in the interval 
0 0[ , ]R Rδ δ− +  where [0,1].δ ∈  

In Fig. 4, we plot ZD  and ZWC  for the Butterfly network. We consider [0,1]δ ∈  in 
increments of 0.1. Note that the robust solution achieves more than 10%  reduction in the 
worst-case value with a smaller than 2% increase in the value for the nominal data. Also, note 
that for 1δ ≥  model ZWC  becomes infeasible, whereas model ZR  is feasible. 
 

 
Fig. 4. Comparison of optimal value of the deterministic solution ( ZR ) with the objective value of the 

deterministic solution under its worst-case scenario ( ZWC ) 
 
We now compare the performance of the robust and deterministic solution for all cases 

through the following ratio:  
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=wc
ZWC ZRr

ZR
−

 

The quantity wcr  is the relative improvement of the robust solution in the worst case. The 
ratio wcr measures the maximum protection that a robust solution can provide against the 
worst-case realization of the uncertainty. 

Note the relative improvement of the robust solution reduced with increase δ . Since δ  
close to 1, coded packet keeps increasing the benefit of the robust solution decreases, as it must 
route flow through the other path. The robust solution is better than the deterministic solution 
in the worst case. Here, we also observe that wcr  decreases for flows larger than a certain level 
and that this drop can be substantial. 

In cases 2 and 3, we consider basic shift for = 10L  that shown Table 1. We consider rates 
in uncertain set RU  for cases 2 and 3 and obtain wcr  for each of them. The simulation results 
are summarized in Table 2. The results show that the robust solutions provide a sufficient 
protection in the worst-case scenario on the nominal data. These results also indicate that the 
robust strategy has a better performance in comparison to the deterministic one, in particular 
as the uncertainty increases. 

 
Table 1. Value of basic shift data 

Basic shift  
1R  2 
2R  1 
3R  1.5 
4R  1 
5R  0.5 
6R  1 
7R  0.5 
8R  1 
9R  1 

10R  0.5 
 

Table 2. Relative improvement of the robust solution in the worst case 

Case 1 
0 3uR δ+ =  

Case 2 
100

1
11l

l
R R

=
+ =∑  

Case 3 
1

100 2 2
1

( ( ) ) 4.46l
l

R R
=

+ =∑  

Rate wcr  Rate wcr  Rate  wcr  

2.1 0.1500 10.63 0.182 4.3101 0.282 

2.2 0.1333 9.16 0.295 2.0933 0.551 

2.3 0.1167 5.47 0.379 3.8270 0.362 
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2.4 0.1000 6.13 0.328 2.4337 0.594 

2.5 0.0833 9.94 0.235 1.8376 0.594 

2.6 0.0667 10.96 0.157 2.3070 0.516 
2.7 0.0500 8.57 0.341 4.669 0.222 
2.8 0.0333 10.94 0.158 4.1579 0.307 
2.9 0.0167 7.95 0.388 1.5578 0.640 
3 0 8.02 0.383 3.1833 0.469 

 

Moreover, the performance of our model was compared with the model proposed by Xi 
and Yeh  [7] to better understand performance evaluation of the procedure. 

Xi and Yeh  [7] presented the problem of finding a minimum cost multicast (MCM) over 
coded packet networks. It was shown that the solution to the problem can be computed using a 
linear optimization model and they provided a set of distributed solutions to solve it. 

We ran the method on randomly generated graphs in order to resemble real-world networks 
using directed graph (RDG) method.  RDG was generated according to the methodology 
proposed by Erdos and Renyi  [21], where it was assumed that there was a link from node i to 
node j with probability 0.5. Next, for each link, two uniform random numbers were generated 
from an interval, say [a, b], in order to represent the cost of link and extra capacity. In our 
experiments, we selected [a ,b] equal to [5,15].  Moreover, for each link, parameters eu and 

ew  were randomly allocated an integer number between 1 and 3 according to a uniform 
probability distribution. The source node and the destinations were chosen randomly and 
uniformly among all of the nodes.  

Two test problems with different sizes were considered and each size was performed under 
different multicast rate interval. Under each interval, the multicast rate, R , for the MCM 
model  was randomly generated according to a discrete uniform distribution on the interval 
and  for  our model was generated according to  approaches described in section (3.2). The 
results of experiments are reported in Table 3, where each simulation results corresponds to 
the average of 10 runs. 

As the results show, the robust model obtained the solutions with both higher quality and 
lower standard deviations than the MCM model. In the most problems, the robust solution 
dominates the obtained solution of the MCM model with respect to the mean and standard 
deviation of objective function values. The gap between the two approaches appears to 
increase with the problem size correspond to performance measures, particularly for standard 
deviation. 

Note that some networks in the MCM model for large multicast rate are infeasible which 
mean the capacity of arcs are insufficient and need to purchase extra capacity. 
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Table 3. Simulated subgraph cost mean and standard deviation as a function of Multicast rate. 

Network 
size sinks Approach 

Multicast rate interval 
0 0[ , ]R Rδ δ− +  

[2,5] [2,7] [2,10] 
Mea
n 

Standar
d deviation Mean Standar

d deviation Mean Standard 
deviation 

10 nods 
4 Model(1) 98.842 20.212 161.428 72.648 211.269 80.326 

Robust 102.318 9.731 158.863 14.703 174.197 16.036 

6 Model(1) 300.661 102.512 281.498 89.34 316.739 142.73 
Robust 278.967 13.423 263.75 18.44 308.46 13.94 

20 nods 4 Model(1) 561.733 346.68 622.714 342.024 757.566 140.032 
Robust 553.259 19.135 617.335 59.81 643.854 52.936 

5. Conclusion 
In this paper, we consider the minimum-cost multicast transmission over coded packet 
networks where the receiver rates are not fixed. We formulated the problem using the best 
worst-case guaranteed robust optimization technique. Accordingly, a tractable problem for 
general uncertainty sets is formulated to compute the robust solution. Our computational 
results show that the robust solution significantly reduces the worst-case cost, in particular for 
higher uncertainty levels. 
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