• Title/Summary/Keyword: mathematical model of the aorta

Search Result 3, Processing Time 0.019 seconds

Non-invasive cardiac output estimation based upon a mathematical model of the aorta; comparsion with thermo-dilution method in 13 patients (대동맥의 수리 모델을 사용한 새로운 비관혈적 심박출량 계산방법)

  • 민병구
    • 전기의세계
    • /
    • v.28 no.12
    • /
    • pp.27-32
    • /
    • 1979
  • 13명의 환자에 있어서 새로운 비관혈적 방법에 의한 심박출량을 계산하고, 열희석에 의한 방법으로 측정한 심박출량과 비교하였다. 본 논문에서 사용한 비관혈적 펄스 전달 방법은 대동맥 모델에서의 최적 매개변수 방법을 사용하였다. 모델의 최적 매개변수는 맥압의 첫번째 고주파 전달함수에서 측정치와 계산치의 차이를 최소화하는 조건에 의하여 계산하였다. 전달함수의 2개의 펄스는 각각 경동맥동과 대퇴동맥에서 Piezo-resistive Pulse Microphone을 사용하여 측정하였고, 대동맥의 직경은 초음파 방법을 사용하여 측정하였다. 13명의 환자에게서 16가지 측정을 해서 열희석과 비관혈적 방법은 0.89의 상관계수를 보여주었다.

  • PDF

Estimation of Blood Pressure Diagnostic Methods by using the Four Elements Blood Pressure Model Simulating Aortic Wave Reflection (대동맥 반사파를 재현한 4 element 대동맥 혈압 모델을 이용한 혈압 기반 진단 기술의 평가)

  • Choi, Seong Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.183-190
    • /
    • 2015
  • Invasive blood pressure (IBP) is measured for the patient's real time arterial pressure (ABP) to monitor the critical abrupt disorders of the cardiovascular system. It can be used for the estimation of cardiac output and the opening and closing time detection of the aortic valve. Although the unexplained inflections on ABP make it difficult to find the mathematical relations with other cardiovascular parameters, the estimations based on ABP for other data have been accepted as useful methods as they had been verified with the statistical results among vast patient data. Previous windkessel models were composed with systemic resistance and vascular compliance and they were successful at explaining the average systolic and diastolic values of ABP simply. Although it is well-known that the blood pressure reflection from peripheral arteries causes complex inflection on ABP, previous models do not contain any elements of the reflections because of the complexity of peripheral arteries' shapes. In this study, to simulate a reflection wave of blood pressure, a new mathematical model was designed with four elements that were the impedance of aorta, the compliance of aortic arch, the peripheral resistance, and the compliance of peripheral arteries. The parameters of the new model were adjusted to have three types of arterial blood pressure waveform that were measured from a patient. It was used to find the relations between the inflections and other cardiovascular parameters such as the opening-closing time of aortic valve and the cardiac output. It showed that the blood pressure reflection can bring wide range errors to the closing time of aortic valve and cardiac output with the conventional estimation based on ABP and that the changes of one-stroke volumes can be easily detected with previous estimation while the changes of heart rate can bring some error caused by unexpected reflections.

Contrast Media in Abdominal Computed Tomography: Optimization of Delivery Methods

  • Joon Koo Han;Byung Ihn Choi;Ah Young Kim;Soo Jung Kim
    • Korean Journal of Radiology
    • /
    • v.2 no.1
    • /
    • pp.28-36
    • /
    • 2001
  • Objective: To provide a systematic overview of the effects of various parameters on contrast enhancement within the same population, an animal experiment as well as a computer-aided simulation study was performed. Materials and Methods: In an animal experiment, single-level dynamic CT through the liver was performed at 5-second intervals just after the injection of contrast medium for 3 minutes. Combinations of three different amounts (1, 2, 3 mL/kg), concentrations (150, 200, 300 mgI/mL), and injection rates (0.5, 1, 2 mL/sec) were used. The CT number of the aorta (A), portal vein (P) and liver (L) was measured in each image, and time-attenuation curves for A, P and L were thus obtained. The degree of maximum enhancement (Imax) and time to reach peak enhancement (Tmax) of A, P and L were determined, and times to equilibrium (Teq) were analyzed. In the computed-aided simulation model, a program based on the amount, flow, and diffusion coefficient of body fluid in various compartments of the human body was designed. The input variables were the concentrations, volumes and injection rates of the contrast media used. The program generated the time-attenuation curves of A, P and L, as well as liver-to-hepatocellular carcinoma (HCC) contrast curves. On each curve, we calculated and plotted the optimal temporal window (time period above the lower threshold, which in this experiment was 10 Hounsfield units), the total area under the curve above the lower threshold, and the area within the optimal range. Results: A. Animal Experiment: At a given concentration and injection rate, an increased volume of contrast medium led to increases in Imax A, P and L. In addition, Tmax A, P, L and Teq were prolonged in parallel with increases in injection time The time-attenuation curve shifted upward and to the right. For a given volume and injection rate, an increased concentration of contrast medium increased the degree of aortic, portal and hepatic enhancement, though Tmax A, P and L remained the same. The time-attenuation curve shifted upward. For a given volume and concentration of contrast medium, changes in the injection rate had a prominent effect on aortic enhancement, and that of the portal vein and hepatic parenchyma also showed some increase, though the effect was less prominent. A increased in the rate of contrast injection led to shifting of the time enhancement curve to the left and upward. B. Computer Simulation: At a faster injection rate, there was minimal change in the degree of hepatic attenuation, though the duration of the optimal temporal window decreased. The area between 10 and 30 HU was greatest when contrast media was delivered at a rate of 2 3 mL/sec. Although the total area under the curve increased in proportion to the injection rate, most of this increase was above the upper threshould and thus the temporal window was narrow and the optimal area decreased. Conclusion: Increases in volume, concentration and injection rate all resulted in improved arterial enhancement. If cost was disregarded, increasing the injection volume was the most reliable way of obtaining good quality enhancement. The optimal way of delivering a given amount of contrast medium can be calculated using a computer-based mathematical model.

  • PDF