• Title/Summary/Keyword: mathematical materials

Search Result 820, Processing Time 0.024 seconds

Green Supply Chain Network Model: Genetic Algorithm Approach (그린 공급망 네트워크 모델: 유전알고리즘 접근법)

  • Yun, Young Su;Chuluunsukh, Anudari
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.3
    • /
    • pp.31-38
    • /
    • 2019
  • In this paper, we design a green supply chain (gSC) network model. For constructing the gSC network model, environmental and economic factors are taken into consideration in it. Environmental factor is to minimize the $CO_2$ emission amount emitted when transporting products or materials between each stage. For economic factor, the total cost which is composed of total transportation cost, total handling cost and total fixed cost is minimized. To minimize the environmental and economic factors simultaneously, a mathematical formulation is proposed and it is implemented in a genetic algorithm (GA) approach. In numerical experiment, some scales of the gSC network model is presented and its performance is analyzed using the GA approach. Finally, the efficiencies of the gSC network model and the GA approach are proved.

Size Distributions of Particulate Matter Emitted during 3D Printing and Estimates of Inhalation Exposure (3D 프린팅 가동 조건 별 발생 입자크기 분포와 흡입 노출량 추정)

  • Park, Jihoon;Jeon, Haejoon;Park, Kyungho;Yoon, Chungsik
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.6
    • /
    • pp.524-538
    • /
    • 2018
  • Objective: This study aimed to identify the size distributions of particulate matter emitted during 3D printing according to operational conditions and estimate particle inhalation exposure doses at each respiratory region. Methods: Four types of printing filaments were selected: acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA), Laywood, and nylon. A fused deposition modeling (FDM) 3D printer was used for printing. Airborne particles between 10 nm and $10{\mu}m$ were measured before, during, and after printing using real-time monitors under extruder temperatures from 215 to $290^{\circ}C$. Inhalation exposures, including inhaled and deposited doses at the respiratory regions, were estimated using a mathematical model. Results: Nanoparticles dominated among the particles emitted during printing, and more particles were emitted with higher temperatures for all materials. Under all temperature conditions, the Laywood emitted the highest particle concentration, followed by ABS, PLA, and nylon. The particle concentration peaked for the initial 10 to 20 minutes after starting operations and gradually decreased with elapsed time. Nanoparticles accounted for a large proportion of the total inhaled particles in terms of number, and about a half of the inhaled nanoparticles were estimated to be deposited in the alveolar region. In the case of the mass of inhaled and deposited dose, particles between 0.1 and $1.0{\mu}m$ made up a large proportion. Conclusion: The number of consumers using 3D printers is expected to expand, but hazardous emissions such as thermal byproducts from 3D printing are still unclear. Further studies should be conducted and appropriate control strategies considered in order to minimize human exposure.

Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.125-135
    • /
    • 2019
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that SiO2 nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as SiO2 nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of SiO2 nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Development of Ship Dynamics Model by Free-Running Model Tests and Regression (자유항주모형시험과 회귀분석을 통한 선체 동역학 모델의 개발)

  • Kim, Kiwon;Kim, Hoyong;Choi, Sungeun;Na, Ki-In;Lee, Hyuk;Seo, Jeonghwa
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.173-182
    • /
    • 2022
  • The present study suggests a procedure of establishing a ship dynamics modeling by regression of free-running model test results. The hydrodynamic force and moment of the whole model ship is derived from the low-pass filtered acceleration in the turning circle and zigzag maneuver tests. Force and moment of the propeller and rudder are separated from that of the whole ship to acquire the hull force and moment terms, based on the principles of the component model. The low-pass filter frequency is verified in prior to dynamics modeling, to find the threshold frequency of 2.5 Hz. The dynamics modeling of the hull is compared with the component modeling by captive model tests. Because of strong correlation between sway velocity, yaw angular velocity, and heel angle, each maneuvering coefficient is not able to be validated, but the whole modeling shows good agreement with the captive model tests.

Preservice Elementary Mathematics Teachers' Curricular Noticing: Focusing on the Lesson Planning for Rate (초등예비교사의 교육과정에 관한 노티싱: 비율 수업을 중심으로)

  • Cho, Mi Kyung
    • Education of Primary School Mathematics
    • /
    • v.24 no.2
    • /
    • pp.83-102
    • /
    • 2021
  • Curricular noticing is about how teachers understand the content and pedagogical opportunities inherent in curriculum materials. Since the enacted curriculum differs depending on which aspect of the curriculum material is paid attention to and how to interpret it, it is necessary to focus on Curricular Attending and Curricular Interpreting in Curricular Noticing for enhancing the teaching expertise of preservice teachers. First, this study categorized the objects that preservice elementary mathematics teachers attended when planning the lesson for rate. Second, in order to find out the reason for paying attention to those objects, it was analyzed what factors were related to interpret. By discussing the results, implications were drawn on how to use Curricular Noticing in preservice teacher education to enhance the pedagogical design competency of preservice elementary mathematics teachers.

Optimization of green closed loop supply chain network considering recycling express box (재활용 익스프레스 박스를 고려한 친환경 폐쇄 루프 공급망 네트워크 최적화)

  • Zhang, Jun-Hao;Che, Jin-Yao
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.211-220
    • /
    • 2022
  • This paper proposes a green closed-loop supply chain network (GCSN) for optimizing closed-loop supply chains. The GCSN focuses on the application of the recycling express box in logistics circulation, accelerates the standardization of logistics operations and the use of express packaging in e-commerce companies, and promotes the reduction and greening of recycling express box in the e-commerce industry. The GCSN is represented as a mathematical formulation and implemented using LINGO. Greening, environmental protection, and wisdom are the general trends for promoting the growth of the e-commerce industry. Meanwhile, the price of raw materials has increased owing to a shortage of resources, which emphasizes the need for e-commerce enterprises to develop green packaging. Therefore, this study considers the shared circular packaging launched by e-commerce enterprises as the research object, and integrates the problem of facility positioning and path planning in the logistics system. The conclusion summarizes the significance of this study.

Mechanical behaviour analysis of FGM plates on elastic foundation using a new exponential-trigonometric HSDT

  • Fatima Z. Zaoui;Djamel Ouinas;Abdelouahed Tounsi;Belkacem Achour;Jaime A. Vina Olay;Tayyab A. Butt
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.551-568
    • /
    • 2023
  • In this research, a new two-dimensional (2D) and quasi three-dimensional (quasi-3D) higher order shear deformation theory is devised to address the bending problem of functionally graded plates resting on an elastic foundation. The displacement field of the suggested theories takes into account a parabolic transverse shear deformation shape function and satisfies shear stress free boundary conditions on the plate surfaces. It is expressed as a combination of trigonometric and exponential shear shape functions. The Pasternak mathematical model is considered for the elastic foundation. The material properties vary constantly across the FG plate thickness using different distributions as power-law, exponential and Mori-Tanaka model. By using the virtual works principle and Navier's technique, the governing equations of FG plates exposed to sinusoidal and evenly distributed loads are developed. The effects of material composition, geometrical parameters, stretching effect and foundation parameters on deflection, axial displacements and stresses are discussed in detail in this work. The obtained results are compared with those reported in earlier works to show the precision and simplicity of the current formulations. A very good agreement is found between the predicted results and the available solutions of other higher order theories. Future mechanical analyses of three-dimensionally FG plate structures can use the study's findings as benchmarks.

Exploring Data Categories and Algorithm Types for Elementary AI Education (초등 인공지능 교육을 위한 데이터 범주와 알고리즘 종류 탐색)

  • Shim, Jaekwoun
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.167-173
    • /
    • 2021
  • The purpose of this study is to discuss the types of algorithms and data categories in AI education for elementary school students. The study surveyed 11 pre-elementary teachers after providing education and practice on various data, artificial intelligence algorithm, and AI education platform for 15 weeks. The categories of data and algorithms considering the elementary school level, and educational tools were presented, and their suitability was analyzed. Through the questionnaire, it was concluded that it is most suitable for the teacher to select and preprocess data in advance according to the purpose of the class, and the classification and prediction algorithms are suitable for elementary AI education. In addition, it was confirmed that Entry is most suitable as an AI educational tool, and materials that explain mathematical knowledge are needed to educate the concept of learning of AI. This study is meaningful in that it specifically presents the categories of algorithms and data with in AI education for elementary school students, and analyzes the need for related mathematics education and appropriate AI educational tools.

  • PDF

Prediction of residual compressive strength of fly ash based concrete exposed to high temperature using GEP

  • Tran M. Tung;Duc-Hien Le;Olusola E. Babalola
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.111-121
    • /
    • 2023
  • The influence of material composition such as aggregate types, addition of supplementary cementitious materials as well as exposed temperature levels have significant impacts on concrete residual mechanical strength properties when exposed to elevated temperature. This study is based on data obtained from literature for fly ash blended concrete produced with natural and recycled concrete aggregates to efficiently develop prediction models for estimating its residual compressive strength after exposure to high temperatures. To achieve this, an extensive database that contains different mix proportions of fly ash blended concrete was gathered from published articles. The specific design variables considered were percentage replacement level of Recycled Concrete Aggregate (RCA) in the mix, fly ash content (FA), Water to Binder Ratio (W/B), and exposed Temperature level. Thereafter, a simplified mathematical equation for the prediction of concrete's residual compressive strength using Gene Expression Programming (GEP) was developed. The relative importance of each variable on the model outputs was also determined through global sensitivity analysis. The GEP model performance was validated using different statistical fitness formulas including R2, MSE, RMSE, RAE, and MAE in which high R2 values above 0.9 are obtained in both the training and validation phase. The low measured errors (e.g., mean square error and mean absolute error are in the range of 0.0160 - 0.0327 and 0.0912 - 0.1281 MPa, respectively) in the developed model also indicate high efficiency and accuracy of the model in predicting the residual compressive strength of fly ash blended concrete exposed to elevated temperatures.

An Analysis on Lessons and Actual Teaching of 'Game Activities' in Elementary Mathematics Textbooks (수학 교과서의 '재미있는 놀이' 차시의 내용 및 지도 실태 분석)

  • Yoon, Su-Ryoun;Kang, Wan;Paik, Seok-Yoon
    • Education of Primary School Mathematics
    • /
    • v.12 no.1
    • /
    • pp.39-55
    • /
    • 2009
  • For this study, the 'Game Activities' lessons presented in the math textbooks from the 1st grade to the 6th were examined in terms of learning materials, the learning members' make-up, the playing structures, and the relation with the contents. In addition, the survey by means of questionnaires was conducted to analyze the actual condition of teachers' guidance in the field. The findings from this research were as follows: First, as for the activities presented in the textbooks, it turned out that too much emphasis is placed upon plays mainly using learning materials such as cards and dice played by teams of two. In addition, there have been shown negative aspects in various ways of plays putting too much emphasis on certain types of plays such as and structures. As for the relation with the contents, although lots of efforts were taken to connect the playing activity to the lesson contents, there were units presenting plays based on the preceding lesson's repeated activity, ones that have weak link with the contents. Second, it turned out that the teachers had negative attitude on the guidance using the 'Game Activities' lesson, although they were aware of the effects of playing in math learning. This seemed to result from the delicate variety and insufficient preparation for the play. Besides, the findings indicate that the appreciation and activity of the 'Game Activities' lesson presented as a way of performance evaluation. for play need to be provided in school or classrooms for teachers and students to make good use of them.

  • PDF