• Title/Summary/Keyword: mathematical materials

Search Result 820, Processing Time 0.023 seconds

Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights

  • Garcia, Victor J.;Marquez, Carmen O.;Zuniga-Suarez, Alonso R.;Zuniga-Torres, Berenice C.;Villalta-Granda, Luis J.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.343-363
    • /
    • 2017
  • The objective of this work was finding out the most advisable testing conditions for an effective and robust characterization of the tensile strength (TS) of concrete disks. The independent variables were the loading geometry, the angle subtended by the contact area, disk diameter and thickness, maximum aggregate size, and the sample compression strength (CS). The effect of the independent variables was studied in a three groups of experiments using a factorial design with two levels and four factors. The likeliest location where failure beginning was calculated using the equations that account for the stress-strain field developed within the disk. The theoretical outcome shows that for failure beginning at the geometric center of the sample, it is necessary for the contact angle in the loading setup to be larger than or equal to a threshold value. Nevertheless, the measured indirect tensile strength must be adjusted to get a close estimate of the uniaxial TS of the material. The correction depends on the loading geometry, and we got their mathematical expression and cross-validated them with the reported in the literature. The experimental results show that a loading geometry with a curved contact area, uniform load distribution over the contact area, loads projected parallel to one another within the disk, and a contact angle bigger of $12^{\circ}$ is the most advisable and robust setup for implementation of BT on concrete disks. This work provides a description of the BT carries on concrete disks and put forward a characterization technique to study costly samples of cement based material that have been enabled to display new and improved properties with nanomaterials.

Studies on the Modeling of the Preparation of the C/SiC Composite for catalyst support by CVI (화학증기침투에 의한 촉매지지체용 C/SiC 복합체 제조에 관한 수치모사 연구)

  • 이성주;김미현;정귀영
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.33-41
    • /
    • 2000
  • In this research, the mathematical modeling of the formation of SiC layer on the activated carbon was studied to improve the durability and the oxidation resistance of catalyst supports. SiC layer on the activated carbon was formed by permeating SiC from dichlorodimethylsilane(DDS) into pores and depositing while the porous structure was kept. The best conditions of manufacturing the support were found by studying the characteristics of SiC/C which was modelled under various deposition conditions. Changes of the amount of deposition, the pore diameter, the surface area with time were obtained by simulating convection, diffusion and reaction in an isothermal reactor at a steady state. The uniform deposition in the pores of samples was obtained at a lower concentration of the reactant and a lower pressure. Additionally, it was observed that the pore diameter and the surface area have points of inflection at certain times of deposition, because deposition occurred on the inside surface of the pore at first and then on the outside surface of the particle.

  • PDF

Model-based Fault Detection Method for the Air Supply System of a Residential PEM Fuel Cell (가정용 고분자전해질 연료전지 공기공급시스템의 모델 기반 고장 검출 기술)

  • WON, JINYEON;KIM, MINJIN;LEE, WON-YONG;CHOI, YOON-YOUNG;HONG, JONG SUP;OH, HWANYEONG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.556-566
    • /
    • 2019
  • Recently, as the supply of residential polymer electrolyte membrane fuel cells (PEMFCs) increases, the durability and lifetime of the PEMFC system are becoming important. The related studies have been mainly focused on the durability and lifetime of materials while the research on the durability and maintenance of the system level is insufficient. In this paper, a model-based fault detection method is developed considering an air supply system that is dominant to the system performance and efficiency. A commercial 1 kW residential fuel cell system is built, and experiments are conducted under various operation loads and states (normal, 6 faults). From the experimental data, nominal models and residuals are generated. With the residual pattern obtained from real-time data, the detection and classification of various faults can be possible. The technical importance of this paper is to minimize extra sensor installation by using the empirical model rather than a complex mathematical model, and to decrease the number of models by using the applicable model at three loads. Finally, the model-based fault detection method for the air supply system of a PEMFC is established and is expected to be applicable to other subsystems.

A Study on Cultivating Creativity through Various and Divergent Thinking Activities - Focused on Mathematics Education in Elementary School - (다양한 확산적 사고활동을 통한 창조성 육성에 관한 연구 - 초등학교 수학교육을 중심으로 -)

  • Lim Mun-Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.10 no.1
    • /
    • pp.1-19
    • /
    • 2006
  • It is generally accepted that fostering creative thinking is a core in mathematics education and accumulating research products on that topic is really needed. In this study, I hoped to investigate and verify that in mathematics education it was possible to cultivate creative thinking through various and divergent activities, For this purpose, I delat with some illustrations, in which students learned mathematics through the operational activities using teaching tools, problem solving and problem posing activities, and finally they seemed to foster creative mathematical thinking. In conclusion of this paper, I have suggested that in math education those activities should be used to cultivate students' creative thinking in kindergarten or early elementary school. Also I asserted that it is urgently need to store up research products about various materials and methods for those mathematics teaching and learning.

  • PDF

Optimization of Process Parameters of Incremental Sheet Forming of Al3004 Sheet Using Genetic Algorithm-BP Neural Network (유전 알고리즘-BP신경망을 이용한 Al3004 판재 점진성형 공정변수에 대한 최적화 연구)

  • Yang, Sen;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.560-567
    • /
    • 2020
  • Incremental Sheet Forming (ISF) is a unique sheet-forming technique. The process is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. In the forming process, the critical parameters affecting the formability of sheet materials are the tool diameter, step depth, feed rate, spindle speed, etc. This study examined the effects of these parameters on the formability in the forming of the varying wall angle conical frustum model for a pure Al3004 sheet with 1mm in thickness. Using Minitab software based on Back Propagation Neural Network (BPNN) and Genetic Algorithm (GA), a second order mathematical prediction model was established to predict and optimize the wall angle. The results showed that the maximum forming angle was 87.071° and the best combination of these parameters to give the best performance of the experiment is as follows: tool diameter of 6mm, spindle speed of 180rpm, step depth of 0.4mm, and feed rate of 772mm/min.

Measurement of the Apparent Density of Shred and Void Fraction in a Tobacco Column

  • Oh, In-Hyeog;Jeh, Byong-Kwon;Ra, Do-Young;Kwak, Dae-Keun;Kim, Byeoung-Ku;Jo, Si-Hyung;Rhee, Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.1
    • /
    • pp.23-29
    • /
    • 2007
  • The measurement of physical properties such as apparent density and void fraction of tobacco materials, which is so bulky, is a main theme with regard to tobacco process, quality control, cigarette combustion and smoke generation. Except Solution Impregnation Method, there was no alternative method for measuring those properties in the porous material so far. However, experimental processes of that method are so complicated as to cost much time and labor, the main solution such as mercury to apply to the method is usually very hazard. Therefore, we had developed a new method to determine them easily in our other paper by the mathematical equations derived from the Ergun equation for the purpose of it, and then already evaluated our method through applying some basic data from Muramatsu et at. (1979) with regard to our developed equations. Then, we found our method best fit to experimental one (Oh et al., 2001). In this study we tried to establish our method to conveniently determine those physical properties. Especially, we have focused on the development the easy way to measure surface area and the volume of single shred in a tobacco column. As a result of that, we found that the computer image analyzer was best fit for it. Then, we have finally determined apparent density and void fraction for our domestic tobacco shred.

Physical Modelling for Consistent Reasonable Thought and Stock-Price Flow Patterns (합리적 생각의 물리적 모델링과 주가 흐름 패턴 분석)

  • Park, Sangup
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1364-1373
    • /
    • 2018
  • A recognizable form having meaning is called a sign in semiotics. The sign is transformed into a physical counter form in this work. Its internal structure is restricted on the linguistic concept structure. We borrow the concept of a mathematical function from the utility function of a rational personal in the economy. Universalizing the utility function by introducing the consistency of independency on the manner of construction, we construct the probability. We introduce a random variable for the probability and join it to a position variable. Thus, we propose a physical sign and its serial changes in the forms of stochastic equations. The equations estimate three patterns (jumping, drifting, diffusing) of possible solutions, and we find them in the one-day stock-price flow. The periods of jumping, drifting and diffusing were about 2, 3.5, and 6 minutes for the Kia stock on 11/05/2014. Also, the semiotic sign (icon, index, symbol) can be expected from the equations.

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.717-726
    • /
    • 2018
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Harmonization of laboratory results by data adjustment in multicenter clinical trials

  • Lee, Sang Gon;Chung, Hee-Jung;Park, Jeong Bae;Park, Hyosoon;Lee, Eun Hee
    • The Korean journal of internal medicine
    • /
    • v.33 no.6
    • /
    • pp.1119-1128
    • /
    • 2018
  • Background/Aims: In multicenter clinical trials, laboratory tests are performed in the laboratory of each center, mostly using different measuring methodologies. The purpose of this study was to evaluate coefficients of variation (CVs) of laboratory results produced by various measuring methods and to determine whether mathematical data adjustment could achieve harmonization between the methods. Methods: We chose 10 clinical laboratories, including Green Cross Laboratories (GC Labs), the central laboratory, for the measurement of total cholesterol, high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), serum triglycerides, creatinine, and glucose. The serum panels made with patient samples referred to GC Labs were sent to the other laboratories. Twenty serum samples for each analyte were prepared, sent frozen, and analyzed by each participating laboratory. Results: All methods used by participating laboratories for the six analytes had traceability by reference materials and methods. When the results from the nine laboratories were compared with those from GC Labs, the mean CVs for total cholesterol, HDL-C, LDL-C, and glucose analyzed using the same method were 1.7%, 3.7%, 4.3%, and 1.7%, respectively; and those for triglycerides and creatinine analyzed using two different methods were 4.5% and 4.48%, respectively. After adjusting data using Deming regression, the mean CV were 0.7%, 1.4%, 1.8%, 1.4%, 1.6%, and 0.8% for total cholesterol, HDL-C, LDL-C, triglyceride, creatinine, and glucose, respectively. Conclusions: We found that more comparable results can be produced by laboratory data harmonization using commutable samples. Therefore, harmonization efforts should be undertaken in multicenter trials for accurate data analysis (CRIS number; KCT0001235).

A Comparative Analysis of the Calligrams of Apollinaire, Paul Eluard, and Lee Sang (아폴리네르, 폴 엘뤼아르, 이상(LEE Sang) 시의 상형적 시어 비교분석)

  • Lee, Byung-Soo
    • Cross-Cultural Studies
    • /
    • v.45
    • /
    • pp.33-54
    • /
    • 2016
  • This study presents a comparative analysis of the calligrammic poetic dictions shown in the poems of the French poets Guillaume Apollinaire and Paul Eluard and in those of the Korean poet Lee Sang. They were adventurers in the avant-garde movement who used experimental techniques that led to futurism, expressionism, cubism, dadaism, and surrealism. They applied a typographic technique that combined pictorial arrangements of fonts, shapes of compositions and between lines, letters of the alphabet, mathematical symbols, and graphical elements, such as circles or lines, to make up a poem that also looked like a painting. Their works, valued as visual lyric poems, break up language and combine anti-poems. They rejected traditional poetic dictions or grammar, but developed a paratactic poem that freely uses letters and symbols. Their calligrammic poetic dictions arouse dynamic images like space extension. Lee Sang's calligrams seem like abstract paintings that apply geometric symbols like those used in technical drawings. As a result, crossing the boundaries between language and pictorial art by using experimental materials and techniques, their poems deconstruct the creative standards of rational and traditional poetic dictions, creating an adventurous, expressive technique. Their calligrammic, avant-garde poems introduced a new spirit of art into both French and Korean modern poetic literature.