• Title/Summary/Keyword: materials mechanical behavior

Search Result 2,000, Processing Time 0.03 seconds

The Effect of Mechanical Properties of Polishing Pads on Oxide CMP ( Chemical Mechanical Planarization )

  • Hong, Yi-Koan;Eom, Dae-Hong;Kang, Young-Jae;Park, Jin-Goo;Kim, Jae-Suk;Kim, Geon;Lee, Ju-Yeol;Park, In-Ha
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.445-446
    • /
    • 2002
  • The purpose of this study was to investigate the effect of micro holes, pattern structure and elastic modulus of pads on the polishing behavior such as the removal rate and WIWNU (within wafer non-uniformity) during CMP. The regular holes on the pad act as the superior abrasive particle's reservoir and regular distributor at the bulk pad, respectively. The superior CMP performance was observed at the laser processed bulk pad with holes. Also, th ε groove pattern shape was very important for the effective polishing. Wave grooved pad showed higher removal rates than K-grooved pad. The removal rate was linearly increased as the top pad's elastic modulus increased.

  • PDF

Impact Damage on Brittle Materials with Small Spheres (I)

  • Woo, Su-Chang;Kim, Moon-Saeng;Shin, Hyung-Seop;Lee, Hyeon-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.30-36
    • /
    • 2003
  • Brittle materials such as glasses and ceramics, which are very weak under impact loading, show fragile failure mode due to their low fracture toughness and crack sensitivity. When brittle materials are subjected to impact by small spheres, high contact pressure occurs at the impacted surface causing local damage on the specimen. This damage is a dangerous factor in causing the final fracture of structures. In this research, the crack propagation process of soda-lime glass by the impact of small spheres is explained and the effects of several constraint conditions for impact damage were studied by using soda-lime glass; that is, the effects for the materials and sizes of impact ball, thickness of specimen and residual strength were evaluated. Especially, this research has focused on the damage behavior of ring cracks, cone cracks and several other kinds of cracks.

Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams

  • Rahmani, O.;Refaeinejad, V.;Hosseini, S.A.H.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • In this paper, various nonlocal higher-order shear deformation beam theories that consider the size dependent effects in Functionally Graded Material (FGM) beam are examined. The presented theories fulfill the zero traction boundary conditions on the top and bottom surface of the beam and a shear correction factor is not required. Hamilton's principle is used to derive equation of motion as well as related boundary condition. The Navier solution is applied to solve the simply supported boundary conditions and exact formulas are proposed for the bending and static buckling. A parametric study is also included to investigate the effect of gradient index, length scale parameter and length-to-thickness ratio (aspect ratio) on the bending and the static buckling characteristics of FG nanobeams.

Study on the Mechanical Behavior of Fiber Metal Laminates Using Classical Lamination Theory (고전 적층이론에 의한 섬유금속적층판의 기계적 거동 연구)

  • 노희석;최흥섭;강길호;하민수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.37-41
    • /
    • 2003
  • In this study the mechanical behaviors of fiber metal laminates (FML) such as ARALL, GLARE and CARE which are recently developed as new structural materials and known to have excellent fatigue resistant characteristics while with relatively low densities compared to the conventional aluminum materials, are considered through the classical lamination theory. The mechanical properties such as elastic moduli, thermal expansion coefficients and hygro-thermally induced residual stresses in the fiber metal laminates are obtained and compared each other. Also load carrying mechanism between metal sheets and composite layers in the FML are considered.

  • PDF

Effect of Microstructure and Unit Cell's Geometry on the Compressive Mechanical Response of Additively Manufactured Co-Cr-Mo Sheet I-WP Lattice

  • So-Yeon Park;Kyu-Sik Kim;Bandar Almangour;Kee-Ahn Lee
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1525-1529
    • /
    • 2022
  • Co-Cr-Mo based sheet I-WP lattice was fabricated via laser powder bed fusion. The effect of microstructure and the I-WP shape on compressive mechanical response was investigated. Results of compression test showed that yield strength of the sheet I-WP was 176.3 MPa and that of bulk Co-Cr-Mo (reference material) was 810.4 MPa. By applying Gibson-Ashby analytical model, the yield strength of the lattice was reversely estimated from that of the bulk specimen. The calculated strength of the lattice obtained was 150.7 MPa. The shape of deformed lattice showed collective failure mode, and its microstructure showed that strain-induced martensitic transformation occurred in the overall lattice. The deformation behavior of additively manufactured sheet I-WP lattice was also discussed.

Finite Element Analysis of Deformation Behavior due to Material Properties during Equal Channel Angular Pressing (등통로각압축(ECAP) 공정에서 재료의 물성에 따른 변형 거동의 유한요소해석)

  • Bae, Gang-Ho;Kwon, Gi-Hwan;Chae, Soo-Won;Kwon, Sook-In;Kim, Myung-Ho;Hwang, Sun-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.187-193
    • /
    • 2002
  • Much research efforts have been made on the equal channel angular pressing (ECAP) which produces ultra-fine grains. Among many process parameters such as channel angles, frictions, die deformations and materials employed, the effects of material properties on the deformation behavior have been investigated. The finite element method has been used to investigate this issue.

Cell behavior study using microfluidic chip (마이크로 유체 칩을 이용한 세포행태에 관한 연구)

  • Park, Joong-Yull;Lee, Sang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1450-1454
    • /
    • 2008
  • In the conventional biology, the most of cell studies was carried out by culturing cells in the Petri dish and by investigating cellular behavior under the diverse bio-molecule (cell signalling materials, drugs or etc.) conditions. However, in vivo environments, diverse stimulations including chemical, mechanical and topological environments involved in the proliferation, differentiation and migration of cells and it is almost impossible to provide these conditions with traditional method. We have developed the methods to provide the well defined chemical and mechanical stimulations using microfluidic devices and applied these approaches to the study of environmental effect on cells. In this paper, we will introduce our microfluidic chips to provide microenvironment and its applications using several cells.

  • PDF

Dynamic deformation behavior of aluminum alloys under high strain rate compressive/tensile loading (상용 알루미늄 합금의 고속 인장/압축 변형거동 규명)

  • Lee, O.S.;Kim, G.H.;Kim, M.S.;Hwang, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.268-273
    • /
    • 2000
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique, a special experimental apparatus, can be used to obtain the material behavior under high strain rate loading condition. In this paper, dynamic deformation behaviors of the aluminum alloys, Al2024-T4, Al6061-T6 and Al7075-T6, under high strain rate compressive and tensile loading are determined using SHPB technique.

  • PDF

Analysis and Application of Mechanical Clinched Joint Using Cohesive Zone Model (접착영역모델을 이용한 클린칭 접합부의 해석 모델 설계 및 적용)

  • Hwang, B.N.;Lee, C.J.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.217-223
    • /
    • 2010
  • The objective of this study is to propose the FE model for mechanical clinched joint using cohesive zone model to analyze its failure behavior under impact loading. Cohesive zone model (CZM) is two-parameter failure criteria approach, which could describe the failure behavior of joint using critical stress and fracture toughness. In this study, the relationship between failure behavior of mechanical clinched joint and fracture parameters is investigated by FE analysis with CZM. Using this relationship, the critical stress and fracture toughness for tensile and shear mode are determined by H-type tensile test and lap shear test, which were made of 5052 aluminum alloy. The fracture parameters were applied to the tophat impact test to evaluate the crashworthiness. Compared penetration depth and energy absorption at the point where 50% of total displacement in result of FE analysis and experiment test for impact test, those has shown similar crashworthiness.

Influence of Reinforced Fiber on Local Failure of the Concrete subjected to Impact of High-Velocity Projectile (고속 비상체 충돌에 의한 콘크리트의 국부파괴에 미치는 혼입 섬유의 영향)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Kim, Jung-Hyun;Lee, Young-Wook;Han, Sang-Hyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.139-140
    • /
    • 2014
  • The purpose of this study in to evaluate relationship between mechanical properties of materials and fiber type by reinforced fiber with high-velocity impact fracture behavior of fiber reinforced concrete. As a result, for fracture behavior by high-velocity impact, it is considered that impact fracture behavior is not affected by static mechanical properties directly but affected by fiber type and density of the number of fiber. It is necessary to consider type, shape, mechanical properties and the number of fiber with flexural and tensile performance for the evaluation on impact resistance performance of fiber reinforced concrete.

  • PDF