• Title/Summary/Keyword: materials mechanical behavior

Search Result 1,967, Processing Time 0.031 seconds

A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites

  • Taheri-Behrooz, Fathollah;Pourahmadi, Emad
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.713-722
    • /
    • 2019
  • Micromechanics is a technique for the analysis of composites or heterogeneous materials which focuses on the components of the intended structure. Each one of the components can exhibit isotropic behavior, but the microstructure characteristics of the heterogeneous material result in the anisotropic behavior of the structure. In this research, the general mechanical properties of a 3D anisotropic and heterogeneous Representative Volume Element (RVE), have been determined by applying periodic boundary conditions (PBCs), using the Asymptotic Homogenization Theory (AHT) and strain energy. In order to use the homogenization theory and apply the periodic boundary conditions, the ABAQUS scripting interface (ASI) has been used along with the Python programming language. The results have been compared with those of the Homogeneous Boundary Conditions method, which leads to an overestimation of the effective mechanical properties. According to the results, applying homogenous boundary conditions results in a 33% and 13% increase in the shear moduli G23 and G12, respectively. In polymeric composites, the fibers have linear and brittle behavior, while the resin exhibits a non-linear behavior. Therefore, the nonlinear effects of resin on the mechanical properties of the composite material is studied using a user-defined subroutine in Fortran (USDFLD). The non-linear shear stress-strain behavior of unidirectional composite laminates has been obtained. Results indicate that at arbitrary constant stress as 80 MPa in-plane shear modulus, G12, experienced a 47%, 41% and 31% reduction at the fiber volume fraction of 30%, 50% and 70%, compared to the linear assumption. The results of this study are in good agreement with the analytical and experimental results available in the literature.

Fracture Behavior Evaluation of Wall Thinned pipes by Finite Element Analysis (감육배관의 요한요소해석에 의한 파괴거동 평가)

  • AHN SEOK-HWAN;NAM KI-Woo;KIM JIN-WOOK;LEE SOO-SIG;YOON JA-MUN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.320-325
    • /
    • 2004
  • Fracture behaviors and strength of pipes with local wall thinning are very important Jar the integrity of energy plants. In pipes of energy plants, sometimes, the local wall thinning may result from severe erosion-corrosion damage. Recently, the effects of local wall thinning on strength and fracture behaviors of piping system have been well studied. In this paper, the elasto-plastic analysis is performed by FE code ANSIS. We evaluated the failure mode, fracture strength and fracture behavior from FE analysis.

  • PDF

Transient thermo-mechanical response of a functionally graded beam under the effect of a moving heat source

  • Al-Huniti, Naser S.;Alahmad, Sami T.
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.27-43
    • /
    • 2017
  • The transient thermo-mechanical behavior of a simply-supported beam made of a functionally graded material (FGM) under the effect of a moving heat source is investigated. The FGM consists of a ceramic part (on the top), which is the hot side of the beam as the heat source motion takes place along this side, and a metal part (in the bottom), which is considered the cold side. Grading is in the transverse direction, with the properties being temperature-dependent. The main steps of the thermo-elastic modeling included deriving the partial differential equations for the temperatures and deflections in time and space, transforming them into ordinary differential equations using Laplace transformation, and finally using the inverse Laplace transformation to find the solutions. The effects of different parameters on the thermo-mechanical behavior of the beam are investigated, such as the convection coefficient and the heat source intensity and speed. The results show that temperatures, and hence the deflections and stresses increase with less heat convection from the beam surface, higher heat source intensity and low speeds.

Measurement of Mechanical Properties and Constitutive Modeling of Woods (목재 물성 측정 및 변형 예측 모델 개발)

  • Kim, K.W.;Kim, D.H.;Kim, M.S.;Ko, Y.J.;Ha, B.K.;Kim, H.S.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.363-369
    • /
    • 2018
  • This study measured the mechanical properties of an ash wood under various temperature and humidity conditions and a finite element model was developed to predict the behavior of the wood. A humidity-controlled chamber was developed and used for measuring the dimensional changes of woods under various humidity conditions. The thermal expansion coefficient and the elastic stiffness constants were measured by using a thermal chamber and the three-point bending test along the three principal axes of the wood. A constitutive model was proposed to describe the moisture content and temperature dependent behavior of wood. The proposed model was validated for the warping test of a wood plate. The warping of the plate was calculated using the finite element method. The calculated amount of warping was in consistence with the measurements.

Dynamics Simulation of Solid Particles in Compression Deformation of Rheology Material (레오로지 소재의 압축변형시 고상입자 거동의 동역학 해석)

  • Lee, C.S.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.395-401
    • /
    • 2006
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy saves. It is important to predict the deformation behavior for optimization of the forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. But rheology material has thixotropic, pseudo-plastic and shear-thinning characteristics. So, it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. General plastic or fluid dynamic analysis is not suitable for the analysis of the rheology material behavior. Recently, molecular dynamics is used for the behavior analysis of the rheology material and turned out to be suitable among several methods. In this study, molecular dynamics simulation was performed for the control of liquid segregation, forming velocity, and viscosity in compression experiment as a part of study on the analysis of rheology forming process.

Analysis of grain size controlled rheology material dynamics for prediction of solid particle behavior during compression experiment (레오로지 소재의 압축 실험 시 고상입자 거동 예측을 위한 결정립 동역학 해석)

  • Kim H.I.;Kim W.Y.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.649-652
    • /
    • 2005
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as long die lift, good mechanical properties and energy saves. Rheology material has a thixotropic, pseudo-plastic and shear-thinning characteristic. Therefore, general plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. So it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. Moreover, it is important to predict the deformation behavior for optimization of net shape forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. In this study, so, molecular dynamics simulation was performed for the control of liquid segregation in compression experiment as a part of study on analysis of rheology forming process.

  • PDF

Endurance Life and Deformation Behavior under Thermo-mechanical Fatigue of Nb-added Heat Resistant Austenitic Stainless Steel (Nb 첨가 오스테나이트계 내열 스테인리스강의 열기계적 피로 수명 및 변형 거동)

  • Oh, Yong Jun;Park, Joong-Cheul;Yang, Won Jon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.541-548
    • /
    • 2011
  • Thermomechanical fatigue (TMF) behavior of heat resistant austenitic stainless steel was evaluated in the temperature range from 100$^{\circ}C$ to peak temperatures of 600 to 800$^{\circ}C$; The fatigue lives under TMF conditions were plotted against the plastic strain range and the dissipated energy per cycle. In the expression of the inelastic strain range versus fatigue life, the TMF data obtained at different temperature ranges were located close to a single line with a small deviation; however, when the dissipated energy per cycle, calculated from the area of the stress-strain hysteresis loops at the half of the fatigue life, was plotted against the fatigue life, the data showed greater scattering than the TMF life against the inelastic strain range. A noticeable stress relaxation in the stress-strain hysteresis curve took place at the peak temperatures higher than 700$^{\circ}C$, but all specimens in this study exhibited cyclic hardening behavior with TMF cycles. Recrystallization occurred during the TMF cycle concurrent with the formation of fine subgrains in the recrystallized region, which is considered to cause the cyclic hardening of the steel.

Experimental evaluation on comparative mechanical properties of Jute - Flax fibre Reinforced composite structures

  • Kumar, B. Ravi;Srimannarayana, C.H. Naga;Krishnan, K. Aniruth;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.515-520
    • /
    • 2020
  • In the modern era, the world is facing unprecedented challenges in form of environmental pollution and international agencies are forcing scientists and materialists to look for green materials and structures to counter this problem. Composites based on renewable sources like plant based fibres, vegetable fibres are finding increasing use in interior components of automobile vehicles, aircraft, and building construction. In the present study, jute and flax fibre based composites were developed and tested for assessing their suitability for possible applications in interior cabin and parts of automobile and aerospace vehicles. Matrix system involves epoxy as resin and fibre weight fractions used were 45% and 55% respectively. Composites samples were prepared as per American society for testing and materials (ASTM) standard and were tested for individual fiber tensile strength, composite tensile strength, and flexural strength to analyse its behavior under various loading conditions. The results revealed that the Jute fibre composites possess enhanced mechanical properties over Flax fibre composites.

Prediction of Mechanical Properties and Behavior of Polymer Matrix Composites Based on Machine Learning (기계학습에 기반한 고분자 복합수지의 기계적 물성 거동 예측)

  • Lee, Nagyeong;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.64-71
    • /
    • 2021
  • Research on polymer matrix composites with excellent molding processability and mechanical properties in the automotive field including hydrogen fuel cell electric vehicles is expanding to Computer-Aided Engineering (CAE) to support the design of materials with specific mechanical properties. CAE automation requires the prediction of the mechanical properties and behavior of materials. Unlike single materials, the mechanical properties prediction of polymer matrix composites is difficult to explain with formulas because the mechanical behavior is complicated to be explained only by the relationship between the matrix and the filler. In this study, the stress-strain curve according to the composition of polymer matrix composites, which was difficult to predict due to its sensitivity to large plastic deformation and composition, was predicted based on machine learning of the test data. The developed model finds a complex correlation between matrix and filler types and compositions, and predicts the total stress-strain curve meaningfully even in the absence of learned test data. It is expected that the material design AI system can be completed in the future based on the developed model that predicts the mechanical properties of polymer matrix composites even for the combination and composition that have not been learned.

Measurement of Cyclic Behavior of Advanced High Strength Steel Sheets Based on Pre-straining and Bending (전변형과 굽힘을 이용한 초고강도 철강 판재의 반복 거동 측정)

  • Chae, J.Y.;Jung, J.;Zang, Shun-lai;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • Cyclic behavior of advanced high strength steel sheets was measured using an inverse-optimization approach with pre-straining and bending. First, tensile specimens were pre-strained, and three-point bending was conducted for the pre-strained specimens. By using the inverse finite element optimization, the combined isotropic-kinematic hardening parameters that minimize the error between the measured and predicted bending force-displacement curves. The measured cyclic behavior agreed well with the cyclic behavior measured by sheet tension-compression test, which confirms the validity of the measuring procedure based on inverse optimization.