• Title/Summary/Keyword: material tests

Search Result 3,863, Processing Time 0.03 seconds

Structural Behavior of Newly Developed Cold-Formed Steel Sections(II) - Flexural Behavior (신형상 냉간성형 단면의 구조적 거동(II) - 휨거동)

  • Song, In Seop;Kim, Gap Deuk;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.357-364
    • /
    • 2002
  • The study performed a series of flexural tests on Closed Cold-Formed Steel Sections for stud, joist, and roof truss. Results were compared with analytical values. Each 2.4-m long and 0.9-m wide specimen consisted of two steel beams set at 0.46 m interval. The steel beams were attached to the specimens using either plaster board or ply wood. Another specimens did not use any attachment material. Positive and negative bending tests were conducted to investigate the composite behavior, including the effects of plaster board or ply wood on the buckling behavior of steel beam. Full-scale roof truss tests were also performed to study the buckling behavior and failure mode of the truss members.

Transient Fault Current Limiting Characteristics of a Transformer Type SFCL Using an Additional Magnetically Coupled Circuit

  • Lim, Seung-Taek;Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.42-45
    • /
    • 2017
  • In this paper, a transformer type SFCL (superconducting fault current limiter) using an additional magnetically coupled circuit was suggested. Its transient fault current limiting characteristics, due to the winding direction of additional coupled circuit, were analyzed through fault current limiting tests. The suggested transformer type SFCL was composed of the primary winding, and one secondary winding wound on the same iron core together with an additional magnetically coupled circuit. That circuit consists of the other secondary winding together with the other SC (superconducting) element connected in parallel with its other secondary winding. As one of the effective design parameters to affect the transient fault current of the SFCL, the fault current limiting tests of the suggested SFCL were carried out considering the winding direction of its additional coupled circuit. It was confirmed that, through the analysis on the fault current tests of the SFCL, the quench sequence of two SC elements comprising the suggested SFCL could be adjusted by the winding direction of the additional coupled circuit.

Evaluating on the Effects of Circumferential Thinning Angle and Bending Load on the Failure Pressure of Wall-Thinned Elbow through Burst Tests (파열 시험을 통한 감육곡관의 손상압력에 미치는 원주방향 결함 폭과 굽힘하중의 영향 평가)

  • Kim, Jin-Weon;Na, Yeon-Soo;Lee, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.14-19
    • /
    • 2006
  • This study performed burst tests using real-scale pipe elbow containing simulated local wall-thinning to evaluate the effects of circumferential thinning angle and bending load on the failure pressure of wall-thinned elbow. The tests were carried out under the loading conditions of internal pressure and combined internal pressure and bending loads. Three circumferential thinning angles, ${\theta}/{\Pi}=0.125,\;0.25,\;0.5$, and different thinning locations, intrados and extrados, were considered. The test results showed that the failure pressure of wall-thinned elbow decreased with increasing circumferential thinning angle for both thinning locations. This tendency is different from that observed in the wall-thinned straight pipe. Also, the failure pressure of intrados wall-thinned elbow was higher than that of extrados wall-thinned elbow with the same thinning depth and equivalent thinning length. In addition, the effect of bending moment on the failure pressure was not obvious.

Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests

  • Tang, Lian Sheng;Chen, Hao Kun;Sun, Yin Lei;Zhang, Qing Hua;Liao, Hua Rong
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.113-124
    • /
    • 2018
  • Under repeated loading, the residual stresses within the subgrade and subsoil can accelerate the deformation of the road structures. In this paper, a series of laboratory cyclic loading model tests and small-scale model tests were conducted to investigate the dynamic stress response within soils under different loading conditions. The experimental results showed that a dynamic stress accumulation effect occurred if the soil showed cumulative deformation: (1) the residual stress increased and accumulated with an increasing number of loading cycles, and (2) the residual stress was superimposed on the stress response of the subsequent loading cycles, inducing a greater peak stress response. There are two conditions that must be met for the dynamic stress accumulation effect to occur. A threshold state exists only if the external load exceeds the cyclic threshold stress. Then, the stress accumulation effect occurs. A higher loading frequency results in a higher rate of increase for the residual stress. In addition to the superposition of the increasing residual stress, soil densification might contribute to the increasing peak stress during cyclic loading. An increase in soil stiffness and a decrease in dissipative energy induce a greater stress transmission within the material.

A Study on the Fatigue Crack Growth Behavior of 9% Ni Steels (9% Ni강의 피로균열진전거동에 관한 연구)

  • Shim, Kyue-Taek;Kim, Jae-Hoon;Lee, Kwan-Hee;Ahn, Byung-Wook;Kim, Young-Kyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.167-172
    • /
    • 2008
  • This study is to evaluate the fatigue crack growth characteristics for base metals and welded metal of 9% Ni steels. Since this material has very excellent fracture toughness at low temperature, it has been widely used for inner walls of LNG storage tank. These materials to compare fatigue crack growth (FCG) behaviour are treated with heat by the method of quenching and tempering (QT), and quenching, lamellarizing and tempering (QLT). FCG tests using compact temsion (CT) specimen under stress ratio R=0.1, 0.5, and constant load are carried out. K-increasing tests are conducted by the standard test method described in ASTM E 647. To investigate the effect of welded metal on the crack growth rate, the locations of notch tip were chosen at the center of welded metal and heat affected zone (HAZ). Form the results, FCG rate has almost same tendency according to stress ratio, base and welded metal, the locations of welded metal. FCG rate of welded metal is somewhat faster than base metal. Also scanning electron microscope (SEM) is used to observe the striation of the fractured surface after fatigue crack tests.

  • PDF

Numerical analysis of fracture mechanisms for porous calcium phosphate (다공성 칼슘포스파이트에 대한 파괴분석)

  • Park, Jin-Hong;Bae, Ji-Yong;Shin, Jae-Bum;Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1301-1302
    • /
    • 2008
  • In this study, the fracture strength for fracture mechanism porous calcium phosphate made from sintered with ${\beta}$-tricalcium phosphate obtained by wet precipitation procedure is analyzed using finite element method and experiment measurement. First, three $3{\times}3{\times}3mm^3$ and $5{\times}5{\times}5mm^3$ specimens are prepared and tomographic images of one $5{\times}5{\times}5mm^3$ specimen are obtained by micro focus X-ray CT. The compression tests using the specimens are carried out to measure the elastic modulus and fracture strength to analyze the fracture mechanism of porous calcium phosphate specimen. The tomographic images are reconstructed by 3D reconstruction program. The finite elements are directly built up in the reconstructed specimen. The numerical simulation for the compression tests is performed using the element. The mechanism of calcium phosphate of simulation are obtained by the compression tests using there cylindric specimen of height 19.5 mm and diameter 10 mm. From the results, the applicability of porous calcium phosphate is evaluated to care fracture and vacant bone of a patient as the reinforcement material.

  • PDF

The Effect of Long Term Thermal Aging on High Temperature Mechanical Properties in STS316 (장시간 시효처리가 316 스트인리스 강의 고온 기계적 성질에 미치는 영향)

  • 임지우;정찬서;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.110-116
    • /
    • 2002
  • At elevated temperature, very complex precipitations occur in STS316. To investigate the effect of the precipitation on mechanical properties in SIS316, tensile tests and fatigue crack growth tests were carried out at $650^{\circ}C$ using artificially degraded materials. The material degradation was simulated by aging for up to 20000 hrs. at $750^{\circ}C$, which is equal to 179000hrs (about 20yrs) of service life at $650^{\circ}C$, after conducting solution treatment for 20 min. at $11300^{\circ}C$. The result of the hardness test and the tensile test showed that both properties are closely related to the mean free distance of carbides. Also, from the results of fracture tests at $650^{\circ}C$, ${\triangle}K_{th}$, after values were found to decrease as aging time and microstructure, as the volume fraction of $\sigma$ phase increased.

Unique local deformations of the superelastic SMA rods during stress-relaxation tests

  • Ashiqur Rahman, Muhammad;Rahman Khan, Mujibur
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.563-574
    • /
    • 2006
  • This paper studies mechanical behavior of the superelastic shape memory alloy (SMA) rods in terms of local deformations and time via tensile loading-unloading cycles for both ends fixed end constraints. Besides the unique stress induced martensitic transformation (SIMT), SMA's time dependent behavior when it is in mixed-phase condition upon loading and unloading, also need careful attention with a view of investigating the local deformation of the structural elements made of the same material. With this perspective, the so-called stress-relaxation tests have been performed to demonstrate and investigate the local strains-total strains relationships with time, particularly, during the forward SIMT. Some remarkable phenomena have been observed pertaining to SIMT, which are absent in traditional materials and those unique phenomena have been explained qualitatively. For example, at the stopped loading conditions the two ends (fixed end and moving end of the tensile testing machine) were in fixed positions. So that there was no axial overall deformation of the specimen but some notable increase in the axial local deformation was shown by the extensometer placed at the middle of the SMA specimen. It should be noted that this peculiar behavior termed as 'inertia driven SIMT' occurs only when the loading was stopped at mixed phase condition. Besides this relaxation test for the SMA specimens, the same is performed for the mild steel (MS) specimens under similar test conditions. The MS specimens, however, show no unusual increase of local strains during the stress relaxation tests.

Fatigue Properties of Copper Foil and the Evolution of Surface Roughness

  • Oh, Chung-Seog;Bae, Jong-Sung;Lee, Hak-Joo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.57-62
    • /
    • 2008
  • The aim of this investigation was to extract the fatigue properties at the designated fatigue life of copper foil and observe the mean stress and stress amplitude effects on both the fatigue life and the corresponding surface morphology. Tensile tests were performed to determine the baseline monotonic material properties of the proportional limit and ultimate tensile strength. Constant amplitude fatigue tests were carried out using a feedback-controlled fatigue testing machine. The mean stress and the stress amplitude were changed to obtain the complete nominal stress-life curves. An atomic force microscope was utilized to observe the relationship between the fatigue damage and the corresponding changes in surface morphology. A Basquin's exponent of-0.071 was obtained through the fatigue tests. An endurance limit of 122 MPa was inferred from a Haigh diagram. The specimen surface became rougher as the number of fatigue cycles increased, and there was a close relationship between the fatigue damage and the surface roughness evolution.

The development of European railway vehicle body through analysis and test (해석 및 시험 평가를 통한 유럽형 전동차 차체 개발)

  • Kim Jeong-Hyun;Kim Sung-Jong;Park Geun-Soo;Park Hung-Soon
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.694-699
    • /
    • 2003
  • Rotem Company has designed and manufactured a railway vehicle body according to the European standard EN 12663, which applies to all railway vehicles within the EU(European Union) and EFTA(European Free Trade Association) territories. EN 12663 specifies the loads vehicle bodies shall be capable of withstanding, identifies how material data shall be used and presents the principles to be used for design verification by analysis and test. The structural design of railway vehicle bodies depends on the loads they are subjected to and the characteristics of the materials they are manufactured from. However, the structural requirements of EN 12663 are very different from those of existing Korean and Japanese regulations and standards. Therefore, in order to fulfill the structural requirements, Rotem Company has carried out Finite Element Analysis (FEA) and has performed load tests on the vehicle body according to EN 12663. This research contains the results obtained by the analysis and the load tests. The analysis is carried out using I-DEAS Master Series 8 and specially designed test jigs and equipment are used for the load tests.

  • PDF