• Title/Summary/Keyword: material tests

Search Result 3,862, Processing Time 0.04 seconds

The Evaluation on In-Situ Adaptability of Mono-layer Landfill Final Cover System (단층형 매립지 최종복토시스템의 현장 적용성 평가)

  • Yu, Chan;Yun, Sung-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.73-80
    • /
    • 2006
  • The mono-layer cover system is composed of soils only as a filling material and various plants are planted on the surface to control the water balance in the cover system. In this paper, the mono-layer cover system was considered as an alternative landfill final cover system and developed a model that could utilize industrial by-product (especially, coal ash & phosphogypsum) as additive filling materials. The mixture of granite soil, coal ash, and phosphogypsum was placed as a cover material in a box constructed with cement. Laboratory tests were carried out to investigate the environmental effect on the utilization of coal ash & phosphogypsum and to determine the mxing ratio of each materials. In the leaching test, all materials showed lower heavy metal concentration than the threshold values of regulation. The optimum mixing ratio of materials which was applied to field model test was determined to soil (4) : coal ash (1) : phosphogypsum (1) on the volume base. Field model tests were continued from February to July, 2004 in the soil box that was constructed with cement block. It was verified that coal ash and phospogypsum mixed with soil was to be safe environmentally and the water balance of mono-layer cover system was reasonable.

Waterproof Characteristic for Environmental Water Flows in Small Streams (소규모 하천 친환경 물흐름을 위한 차수특성)

  • Park, Min-Cheol;Kim, Seong-Goo;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.192-199
    • /
    • 2010
  • This research produced internal model tester ($2.0m{\times}2.0m{\times}1.0m$) to evaluate the field application of Paju Unjeong District water recycling system for small streams eco-friendly river bed disparity method for the first time in Korea and conducted comparative analysis of the Paju Unjeong District water recycling system field test results and infiltration rate result of internal tests by each rainfall intensity following surface material. Infiltration rate result of internal tests concrete pavement by rainfall intensity following surface material, asphalt pavement, bentonite mate, stabilized soil construction and mixed soil construction manifested low infiltration rate. On the contrary, compaction soil, grassland and water permeable packaging materials resulted in significant amount of infiltration rate. As for the field permeability test results, they were manifested similar tendency as indoor permeability test results and they satisfied the standard for standard of water permeability of domestic disparity facility (less than $1.0{\times}10-7cm$/sec). As compaction rate increased, unconfined compression strength increased as well while coefficient of water permeability decreased.

  • PDF

Current Limitation by Bi-2223 Bifilar Winding Coils

  • Ahn Min Cheol;Bae Duck Kweon;Park Dong Keun;Yang Seong Eun;Yoon Yong Soo;Ko Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.31-34
    • /
    • 2005
  • There are many kinds of high temperature superconducting (HTS) application using Bi-2223 tape which is the most commercialized HTS material. Also, resistive superconducting fault current limiters (SFCLs) have been developed using many kinds of superconducting material such as YBCO thin film, Bi-2212 bulk and so on. However, SFCL using Bi-2223 tape has never been developed. This paper deals with the feasibility study on SFCL using Bi-2223 wire. The over-current behaviors of Bi-2223 short-length sample were measured. To make the resistive SFCL, two small-scale bifilar winding modules using 7m Bi-2223 wire were fabricated; i.e. solenoid type bifilar coil and pancake type one. The short-circuit tests of the coils were successfully performed up to 16 V$_{rms}$ From these tests, the current limiting capabilities of Bi-2223 bifilar coils were confirmed and current limiting performances between two winding types were compared. In addition, the feasibility of resistive SFCL using another HTS wire, i.e. YBCO coated conductor, was also investigated.

Investigation on Mechanical Property and Adhesion of Oxide Films Formed on Ni and Ni-Co Alloy in Room and High Temperature Environments

  • Oka, Yoshinori I.;Watanabe, Hisanobu
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.145-151
    • /
    • 2008
  • Material degradation such as high temperature oxidation of metallic material is a severe problem in energy generation systems or manufacturing industries. The metallic materials are oxidized to form oxide films in high temperature environments. The oxide films act as diffusion barriers of oxygen and metal ions and thereafter decrease oxidation rates of metals. The metal oxidation is, however, accelerated by mechanical fracture and spalling of the oxide films caused by thermal stresses by repetition of temperature change, vibration and by the impact of solid particles. It is therefore very important to investigate mechanical properties and adhesion of oxide films in high temperature environments, as well as the properties in a room temperature environment. The oxidation tests were conducted for Ni and Ni-Co alloy under high temperature corrosive environments. The hardness distributions against the indentation depth from the top surface were examined at room temperature. Dynamic indentation tests were performed on Ni oxide films formed on Ni surfaces at room and high temperature to observe fractures or cracks generated around impact craters. As a result, it was found that the mechanical property as hardness of the oxide films were different between Ni and Ni-Co alloy, and between room and high temperatures, and that the adhesion of Ni oxide films was relatively stronger than that of Co oxide films.

A Study on the Characteristics of Fire Resistance of Window Material in Compartment Fire (건물화재시 창문재료에 따른 내화특성 연구)

  • Hur, Man-Sung;Jang, Moon-Seok;Cho, Soo
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.62-67
    • /
    • 2003
  • The full-scale compartment fire tests were carried out to evaluate the characteristics of fire resistance of window material under actual fire conditions. The room size used for full-scale room fire tests was 4 by 3.8 m with 2.4 m high ceiling. The windows with PVC, Aluminum and AL+Wood frame materials were established, sofa and mattress were used as fire sources. The window contained pair glasses with the air between 6 mm glasses. Temperatures at total 32 points in the room were measured to find the temperature distribution in the room fire. It is examined that thermal effects on window frame materials such as charring, distortion, melting, structural collapse, and other effects.

Green Consumption Behavior According to the Lifestyles of College Students (대학생 소비자의 라이프스타일에 따른 녹색소비행동에 관한 연구)

  • Kim, Hyo-Chung
    • Korean Journal of Human Ecology
    • /
    • v.20 no.6
    • /
    • pp.1135-1151
    • /
    • 2011
  • This study examined green consumption behavior according to the lifestyles of college students. The data were collected from 314 college students in Yeungnam region by a self-administered questionnaire. Frequencies, Cronbach's alpha, factor analysis, cluster analysis, chi-square tests, one-way analysis of variance, Duncan's multiple range tests, Pearson's correlation analysis, and multiple regression analyses were conducted by SPSS Windows V.18.0. According to the result of factor analysis, lifestyles were categorized into six factors: thrift-saving type, enthusiastic activity type, brand ostentation type, freedom-seeking type, material oriented type, and practice-seeking type. Cluster analysis showed respondents belonged to one of four groups: thrift practice group, indifference group, freedom-seeking group, and material ostentation group. The levels of green purchase behavior, green usage behavior and green disposal behavior of the respondents was not high. The thrift practice group showed higher levels of green purchase behavior, green usage behavior, and green disposal behavior. Finally, according to multiple regression analyses, environmental consciousness, knowledge about green consumption, lifestyle groups were the significant factors affecting green consumption behaviors. These results imply that green consumption education for college students should be activated to induce green life.

Development of Surface Treatment Systems for Concrete Structures to Extend Service Life (내구수명 증진을 위한 콘크리트 구조물용 표면처리공법 개발)

  • Lee, Chang-Soo;Yoon, In-Seok;Lee, Kyu-Dong;Park, Jong-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.255-261
    • /
    • 2002
  • Concrete structures stand in poor surrounding than it has ever been met before, because they are installed in severe conditions such as chloride penetration. $CO_2$ gas, water and so on. Therefore, the countermeasure to efficiently protect from the deterioration of concrete structures should be urgently considered. From this point of view, this study was aimed to develop surface treatment systems for concrete structures, which cover physical properties, long term durability and economic consideration. Developing the optimal surface treatment materials, powder type polymer or liquid type polymer was added to inorganic base materials. Three surface treatment materials which had shown best results in primary tests were selected and durability tests were fulfilled. Consequently optimum surface treatment material was developed. The surface treatment materials, which were developed through this study, can efficiently extend the service life of concrete structures. As a result, the life cycle cost should be reduced and the waste of material resources would be cut down.

Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Frequency Analysis Spectrum Method (초음파 주파수분석법에 의한 발전소 고온배관재료의 크리프손상 평가)

  • Chung, Min-Hwa;Lee, Sang-Guk
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.90-98
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions like high temperature and high pressure for an extended period time. Such material degradation lead to various component faliures causing serious accidents at the plant. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this study, both artificial creep degradation test using life prediction formula and frequency analysis by ultrasonic tests for their preparing creep degraded specimens have been carried out for the purpose of nondestructive evaluation for creep damage which can occur in high-temperature pipelline of fossil power plant. As a result of ultrasonic tests for crept specimens, we confirmed that the high frequency side spectra decrease and central frequency components shift to low frequency bans, and bandwiths decrease as increasing creep damage in backwall echoes.

  • PDF

Development of Landfill Material by Utilizing Waste Lime

  • Shin, Eun-Chul;Oh, Young-In
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.17-25
    • /
    • 1999
  • The feasibility of using waste lime, which is produced as a byproduct during the manufacture of sodium carbonate in Inchon, Korea. as a stabilization admixture with weathered granite soil was investigated. Laboratory tests were conducted to determine the chemical composition, pH, compaction characteristics, unconfined compression strength. X-ray diffraction analysis of waste lime and weathered granite soil admixtures. Based on the present tests, it appears that the admixtures are environmentally safe and can be used as landfill material.

  • PDF

Structural Stability for Pt Line and Cross-Bar Sub-Micron Patterns (고정렬 Pt 라인 및 크로스-바 미세패턴의 구조적 안정성 연구)

  • Park, Tae Wan;Park, Woon Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.510-514
    • /
    • 2018
  • This study discusses and demonstrates the structural stability of highly ordered Pt patterns formed on a transparent and flexible substrate through the process of nanotransfer printing (nTP). Bending tests comprising approximately 1,000 cycles were conducted for observing Pt line patterns with a width of $1{\mu}m$ formed along the direction of the horizontal (x-axis) and vertical (y-axis) axes ($15mm{\times}15mm$); and adhesion tests were performed with an ultrasonicator for a period greater than ten minutes, to analyze the Pt crossbar patterns. The durability of both types of patterns was systematically analyzed by employing various microscopes. The results show that the Pt line and Pt crossbar patterns obtained through nTP are structurally stable and do not exhibit any cracks, breaks, or damages. These results corroborate that nTP is a promising nanotechnology that can be applied to flexible electronic devices. Furthermore, the multiple patterns obtained through nTP can improve the working performance of flexible devices by providing excellent structural stability.