• Title/Summary/Keyword: material tests

Search Result 3,862, Processing Time 0.041 seconds

A study on the development of the composite optical bench design (위성체용 복합재료 광학 탑재 구조물 설계 연구)

  • Kim Byung-Sun;Kim Jin-Bong;Ha Jong-Hak;Rhee Ju-Hun;Kim Jin-Hee;Kim Kyung-Won;Kim Sung-Hoon;Hwang Do-Soon;Kim Dong-Uk
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.228-231
    • /
    • 2004
  • The optical bench was designed using composite material, M40J/Cyanate Ester. Mechanical tests, thermal tests were carried out for M40J and structural vibration FEM analysis was performed. From the experimental results, the material properties of M40J/Cyanate Ester were obtained in longitudinal and transverse directions. By applying the properties into FEM vibration analysis, a proper stacking sequence was proposed for the laminated facesheets, so that natural frequency of the platform structure satisfy the design specification.

  • PDF

A Study on the high velocity impact resistance of hybrid composite materials (하이브리드 복합재료의 고속충격 저항성에 관한 연구)

  • Sohn, Se-Won;Kim, Hee-Jae;Kim, Young-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.273-278
    • /
    • 2003
  • Recently, high-performance hybrid composite materials have been used for various industrial fields because of their superior high strength, high stiffness and lower weight. In this study, manufactured hybrid composite materials are composed of two parts. One is hard-anodized Al5083-O alloy as a face material and the other is high strength aramid fiber ($Twaron^{(R)}$ CT709) laminates as a back-up material. Resistance to penetration is determined by protection ballistic limit($V_{50}$, a static velocity with 50% probability for complete penetration) test method. $V_{50}$ tests with $0^{\circ}$obliquity at room temperature were conducted with 5.56mm ball projectiles that were able to achieve near or complete penetration during high velocity impact tests.

  • PDF

The Simulations on the Formability of AZ31 Magnesium Alloy Sheet in Warm Deep Drawing (AZ31 마그네슘합금판의 온간 디프드로잉 성형성해석)

  • Kang, Dae-Min;Hwang, Jong-Kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • The material used is a commercial magnesium based alloy AZ31(Mg-3Al-1Zn)sheet with a thickness of 1.0mm. Uniaxial tension tests at warm temperature were carried out to investigate the material characteristics of K, m, and n. A warm drawing process with a local heating and cooling technique was developed to improve formability in this study with results of uniaxial tension tests because it is very difficult for Mg alloy to deform at room temperature by the conventional method. The die and blank holder were heated up, while the punch was water-cooled during deformation. FE simulations considering heat transfer were executed with Mg alloy to investigate the Improvement of deep drawability. For the assessment of improvement those were compare with the results of no considering heat transfer and room temperature.

  • PDF

Creep Behaviours of Glasses Rim Material Alloy (안경테소재 합금(Ti-6AI-4V)의 크리프 특성)

  • 황경충;윤종호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.248-253
    • /
    • 2003
  • Titanium alloy has widely been used as glasses rim material because it has high specific strength and also is light, harmless to men. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, an apparatus has been designed and built for conducting creep tests under constant load conditions. A series of creep tests on them have been performed to get the basic design data and life prediction of titanium products and we have gotten the following results. First, the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy gradually decreases as the stresses become bigger. Thirdly, the constant of Larson-Miller parameters on this alloy is estimated about 13. And last, the fractographs at the creep rupture show both the ductile and the brittle fracture according to the creep conditions.

  • PDF

A Study on the high-velocity impact resistance of fiber reinforced metal laminate materials (섬유강화 금속 적층 재료의 고속 충격 저항성에 관한 연구)

  • 손세원;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1378-1381
    • /
    • 2003
  • Recently, high-performance composite materials have been used for various industrial fields because of their superior high strength, high stiffness and lower weight. In this study, manufactured fiber reinforced metal laminate materials are composed of two parts. One is hard-anodized A15083-O alloy as a face material and the other is high strength aramid fiber (Twaron CT709) and polyethylene fiber(Dyneema HB25) laminates as a back-up material. Resistance to penetration is determined by protection ballistic limit(V$\sub$50/, a static velocity with 50% probability for complete penetration) test method. V$\sub$50/ tests with 0$^{\circ}$ obliquity at room temperature were conducted with 5.56mm ball projectiles that were able to achieve near or complete penetration during high velocity impact tests.

  • PDF

Development and Characteristic Tests of Acrylic Rubber for Viscoelastic Dampers (점탄성 댐퍼용 아크릴 방진고무의 개발 및 특성시험)

  • Park, Jin-Il;Jeoung, Jeoung-Kyo;Park, Hae-Dong;Kim, Young-Chan;Kim, Doo-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.722-727
    • /
    • 2001
  • The dynamic characteristics of Viscoelastic(VE) damper are experimentally studied. An experimental test was carried out to study the effects of frequency on the damping and stiffness of VE damper. Various cyclic loading tests are conducted. A good agreement was achieved between the experimental results and analytical model proposed by Kasai et al. Also the damping of acrylic rubber is compared with that of PNR material. It was concluded that the damping value of acrylic rubber is higher than that of PNR material.

  • PDF

Evaluation on stability of scour countermeasures using geobag and recycled aggregates (재생골재를 활용한 지오백 세굴보호공법의 안정성 평가)

  • Lee, Ju-Hyung;Park, Jae-Hyun;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.233-244
    • /
    • 2009
  • A new bridge scour countermeasure using geobags and recycled aggregates which is more stable and economical than existing methods is proposed, and its stability was verified through material tests. PP short staple nonwoven geotextile and PET long staple nonwoven geotextile produced in Korea were selected, and a series of strength tests and a test of hydraulic characteristics were conducted to determine a suitable geotextile for geobags. A series of leaching test was also conducted to assess the potential environmental risk of recycled concrete produced in Korea when it is utilized as a material for protecting bridge piers against scour.

  • PDF

Reliability Assessment of Polymer Insulators by Accelerated Aging Test (가속열화시험에 의한 폴리머애자의 신뢰성 평가)

  • Han, Jae-Hong;Lee, Byung-Sung;Jung, Jong-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.10-14
    • /
    • 2001
  • In order to assess the long-tenn reliability of polymer insulators for distribution power systems, we have developed the accelerated aging test method which can simulate the operation conditions. In this study, 3000 hours aging test for 4 kinds of polymer insulators has been completed by the developed accelerated aging test. After 3000 hours aging test, visual inspection and electrical tests were carried for identifying a change of characteristics. Some specimens showed the surface erosion and the manufacturing defect. In the electrical tests, the wet flashover voltage was significant1y decreased by the accelerated aging test. In comparison with the field-aged polymer insulators, it can be concluded that the developed test method can evaluate the long-tenn reliability within short time and screen the manufacturing defect.

  • PDF

Monotonic and cyclic flexural tests on lightweight aggregate concrete beams

  • Badogiannis, E.G.;Kotsovos, M.D.
    • Earthquakes and Structures
    • /
    • v.6 no.3
    • /
    • pp.317-334
    • /
    • 2014
  • The work is concerned with an investigation of the advantages stemming from the use of lightweight aggregate concrete in earthquake-resistant reinforced concrete construction. As the aseismic clauses of current codes make no reference to lightweight aggregate concrete beams made of lightweight aggregate concrete but designed in accordance with the code specifications for normal weight aggregate concrete, together with beams made from the latter material, are tested under load mimicking seismic action. The results obtained show that beam behaviour is essentially independent of the design method adopted, with the use of lightweight aggregate concrete being found to slightly improve the post-peak structural behaviour. When considering the significant reduction in deadweight resulting from the use of lightweight aggregate concrete, the results demonstrate that the use of this material will lead to significant savings without compromising the structural performance requirements of current codes.

Experimental Formability Investigation for FSW Sheets with Respect to Base Material's Directional Combination (모재의 방향성에 따른 마찰교반용접 판재의 성형성에 관한 실험적 연구)

  • Kim, Dae-Yong;Lee, Won-Oh;Kim, June-Hyung;Kim, Chong-Min;Chung, Kwan-Soo
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.73-79
    • /
    • 2009
  • In order to investigate the formability of friction stir welded(FSW) tailor welded blanks(TWB) with respect to the base material's directional combination, aluminum alloy AA6111-T4 sheets were welded with three different conjoining types: RD-RD, TD-RD and TD-TD. Here, RD and TD represent rolling and transverse directions, respectively. For experimental formability study, three tests with gradual complexity were performed: the simple tension test with various weld line directions for uni-axial elongation, the hemisphere dome stretching test for biaxial stretching and the cylindrical cup deep drawing test. As a result, all three forming tests showed that RD-RD type samples exhibited the best formability, while TD-TD type sheets showed the least formability performance.