• Title/Summary/Keyword: material strengthening

Search Result 407, Processing Time 0.03 seconds

Development of Numerical Tool considering Interfacial Fracture Behavior in Repaired RC Structure (보수.보강된 RC 구조물의 경계면 파괴를 고려한 수치해석 기법 개발)

  • 임윤묵;김문겸;신승교;고태호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.553-558
    • /
    • 2000
  • In this study, a numerical simulation that can effectively predict the interfacial fracture behavior in repaired structures is developed using the axial deformation link elements. In repaired structures, concrete and interface are considered as quais-brittle materials, and steel plate as a repair material and reinforcement are modeled as elasto-plastic materials. The behavior of repaired reinforced concrete structures under flexural loading conditions is numerically simulated, and compaired with experimental results. The strengthening effect according to the length and thickness of the repair material is studied and rip-off, debonding and rupture failure mechanism of interface between substrate and repair materials are detected. It is shown that the interface properties affect on the mechanical behavior of repaired structures. Therefore, the developed numerical method using axial deformation link elements can be used for determining the strengthening effects and failure mechanism of repaired structures.

  • PDF

Numerical Simulation of Rehabilitated Flexural RC Member using High Performance Composite (균열제어 기능성 복합재료를 이용한 RC 휨 부재 보강수치해석)

  • 신승교;김태균;임윤묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.543-548
    • /
    • 2003
  • In this study, a numerical model is developed using axial deformation link elements that can effectively predict the failure behavior of RC type structures. Using this mod 1, numerical analysis was performed to investigate the strengthening effect and failure behavior of structures repaired with a new material. High-Performance Cementitious Composites, which is characterized by its ductility with 5% strain-capacity is used as a repair material. To investigate the validity of developed numerical model, simulations of direct tension specimen and flexural specimen are performed and the results are compared with published ones. The similar analysis is performed for RC beam. Through this study, it is seen that predicted response has a good agreement with the experimental results. Using this verified numerical model, the strengthening effect of repaired with HPCC structure is analyzed through load-displacement curve and failure modes. Also, the same numerical analysis is performed in RC beam repaired with HPCC. The effect of HPCC ductility is estimated for the overall behavior of structures. Based on the results, the fundamental data are suggested for repaired structures with HPCC.

  • PDF

Study on the Fatigue Behaviors of R/C Beam Strengthened with Steel Plate and Carbon Fiber Sheet (강판 및 탄소섬유 sheet로 보강된 R/C 보의 피로거동에 관한 연구)

  • 심종성;홍영균;최완철;황의숭;이차돈;배인환;박성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.319-324
    • /
    • 1995
  • Strengthening a damaged structure by bonding steel plate on the surface of cracked structural members have been widely accepted for strengthening the structural components Recently, however, caron fiber sheets have been developed in order to achive more effective way of strengthening damaged structures due to their superior material properties to those of conventionally used steel plates in terms of their lighter unit weight and higher tensile strength. It has been reported that when both methods are applied to a damaged beam element, flexural strength and its stiffness of a beam increase and the rate of crack development as well as crack width and edflection under service loads are reduced, In this study some experiments are performed in order to comparetively observe the structural properties of the damaged beams which are either strengthened with different lengths of steel plates or with carbon sheets on the crack propagation, failure mechanisms, and load-deflection charateristics under the fatigue loadings.

  • PDF

Digitalization of Architectural Material Information Centered on Interior Design Image (이미지 기반 건축 재료 정보의 디지털화에 관한 연구)

  • 오수영;정선영;고경진;최용의;이현수
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2000.11b
    • /
    • pp.173-178
    • /
    • 2000
  • As a way of decreasing trial and error that can occur in design, we investigated many kinds of material information and image information. We apprehended structures of material database and image database to suggest one of design method that provides information by connecting both databases. This has potentiality to improve the quality of design. Ultimately, this potentiality makes a great contribution towards strengthening competitiveness in design.

  • PDF

Material Properties and Strengthening Mechanism in Shape Memory TiNi Fiber Reinforced Al Matrix composite (TiNi/Al 형상기억 지적복합재료의 기계적 특성 및 강화기구)

  • Park, Yeong-Cheol;Yun, Du-Pyo;Lee, Gyu-Chang;Huruya, Y.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.405-413
    • /
    • 1997
  • In the present paper, it is attempted to reconfirm the "Intelligent" material properties using both the sintered TiNi/Al(1100) matrix composite made by powder metallurgy method and the squeeze-casted TiNi/Al6061 specimens. A metal matrix composite is, its fault has been considered to deteriorate a strength of composite by heating residual stress of the matrix. Therefore, it is necessary to remove a tensile residual stress, to produce the strength of a composite better. On the contrary, if compressive residual stress happens in matrix of composite in place of tensile residual stress, it will make the strength of composite better. So that, this paper introduce the development of a high strength of composite, by using compressive residual stress well, on the study. By using these specimens, shape memory strengthening effects in tensile strength and fatigue crack propagation above inverse transformation temperature of TiNi fiber were investigated. We occurs the prestrain and volume fraction for to discuss the effects of a composite strength. Moreover, by SEM observation, the effect of the residual stress at the interface between Al matrix and TiNi fiber and some brittle precipitation layers such as inter metallic compounds on fracture mechanisms was discussed metallurgically.urgically.

A framework for modelling mechanical behavior of surrounding rocks of underground openings under seismic load

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Pei, Qitao;Wu, Yongjin
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.519-529
    • /
    • 2017
  • The surrounding rocks of underground openings are natural materials and their mechanical behavior under seismic load is different from traditional man-made materials. This paper proposes a framework to comprehensively model the mechanical behavior of surrounding rocks. Firstly, the effects of seismic load on the surrounding rocks are summarized. Three mechanical effects and the mechanism, including the strengthening effect, the degradation effect, and the relaxation effect, are detailed, respectively. Then, the framework for modelling the mechanical behavior of surrounding rocks are outlined. The strain-dependent characteristics of rocks under seismic load is considered to model the strengthening effect. The damage concept under cyclic load is introduced to model the degradation effect. The quantitative relationship between the damage coefficient and the relaxation zone is established to model the relaxation effect. The major effects caused by seismic load, in this way, are all considered in the proposed framework. Afterwards, an independently developed 3D dynamic FEM analysis code is adopted to include the algorithms and models of the framework. Finally, the proposed framework is illustrated with its application to an underground opening subjected to earthquake impact. The calculation results and post-earthquake survey conclusions are seen to agree well, indicating the effectiveness of the proposed framework. Based on the numerical calculation results, post-earthquake reinforcement measures are suggested.

Flexural strengthening of RCC beams using FRPs and ferrocement - a comparative study

  • Ganesan, N.;Bindurania, P.;Indira, P.V.
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.35-48
    • /
    • 2020
  • This paper deals with a comparative study among three different rehabilitation techniques, namely, (i) carbon fibre reinforced polymer (CFRP), (ii) glass fibre reinforced polymer (GFRP) and (iii) ferrocement on the flexural strengthening of reinforced cement concrete (RCC) beams. As these different techniques have to be compared on a level playing field, tensile coupon tests have been carried out initially for GFRP, CFRP and ferrocement and the number of layers required in each of these composites in terms of the tensile strength. It was found that for the selected constituents of the composites, one layer of CFRP was equivalent to three layers of GFRP and five layers of wiremesh reinforcement in ferrocement. Rehabilitation of RCC beams using these equivalent laminates shows that all the three composites performed in a similar way and are comparable. The parameters selected in this study were (i) the strengthening material and (ii) the level of pre-distress induced to the beams prior to the rehabilitation. It was noticed that, as the levels of pre-distress decreases, the percentage attainment of flexural capacity and flexural stiffness of the rehabilitated beams increases for all the three selected composites used for rehabilitation. Load-deflection behavior, failure modes, energy absorption capacity, displacement ductility and curvature ductility were compared among these composites and at different distress levels for each composite. The results indicate that ferrocement showed a better performance in terms of ductility than other FRPs, and between the FRPs, GFRP exhibited a better ductility than the CFRP counterpart.

Nonlinear analysis of contemporary and historic masonry vaulted elements externally strengthened by FRP

  • Hamdy, Gehan A.;Kamal, Osama A.;El-Hariri, Mohamed O.R.;El-Salakawy, Tarik S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.611-619
    • /
    • 2018
  • This paper addresses numerical modeling and nonlinear analysis of unreinforced masonry walls and vaults externally strengthened using fiber reinforced polymers (FRP). The aim of the research is to provide a simple method for design of strengthening interventions for masonry arched structures while considering the nonlinear behavior. Several brick masonry walls and vaults externally strengthened by FRP which have been previously tested experimentally are modeled using finite elements. Numerical modeling and nonlinear analysis are performed using commercial software. Description of the modeling, material characterization and solution parameters are given. The obtained numerical results demonstrate that externally applied FRP strengthening increased the ultimate capacity of the walls and vaults and improved their failure mode. The numerical results are in good agreement with the experimentally obtained ultimate failure load, maximum displacement and crack pattern; which demonstrates the capability of the proposed modeling scheme to simulate efficiently the actual behavior of FRP-strengthened masonry elements. Application is made on a historic masonry dome and the numerical analysis managed to explain its structural behavior before and after strengthening. The modeling approach may thus be regarded a practical and valid tool for design of strengthening interventions for contemporary or historic unreinforced masonry elements using externally bonded FRP.

Evaluation of Behavior and Ductility of Reinforced Concrete Beams Strengthened With AFRP (AFRP로 보강된 철근콘크리트 보의 휨 거동과 연성도 평가)

  • Kim, Jun-Won;Kim, Tae-Wan;Hong, Sung-Nam;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.206-214
    • /
    • 2009
  • Due to its outstanding feature, FRP is used widely for the material of strengthening in USA and Japan recently, and there have been active researches in korea as well. This study evaluates the behavior and ductility of each structure experiment using EBR and NSMR strengthening method with different AFRP types and strengthening area. There was the biggest increase in the load when the strengthening area is expanded showing a brittle aspect, and eventually the immature failure occurred. With regard to the methods, it is found that the NSMR method is more effective to strengthen the structure, and the uneven surface causes ductile failure.

Evaluation on Strengthening Capacities and Rebound Rate of Structures with Sprayed FRP (분사식 FRP에 의한 구조물의 보강 성능 및 반발률 평가)

  • Han, Seung-Chul;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.193-202
    • /
    • 2008
  • This paper investigates experimentally the confining effect, strengthening capacity and rebound rate of sprayed Fiber-Reinforced-Polymer (SFRP). From the method, resin and chopped fibers are sprayed separately from the nozzle with high pressure, and then they are attached to the concrete surface, so structure could be repaired. To evaluate the strengthening effect of sprayed FRP, cylindrical specimens and beam specimens were strengthening with SFRP. As main material of FRP, glass fiber and polyester resin are used. To investigate the optimum condition of sprayed FRP, the effects of fiber length, coating thickness, fiber volume ratio and concrete strength were examined. Capacities of sprayed FRP method were also compared to the FRP sheet method. In case of the sprayed FRP, rebound rate is important parameter considering economical efficiency and constructibility, so rebound rate of was discussed. From the test results, optimum conditions of sprayed FRP were determined. SFRP method showed superior strengthening capacities than FRP sheet method.