• 제목/요약/키워드: material strengthening

검색결과 407건 처리시간 0.028초

전단보강철근이 없는 RC보에 대한 에폭시 모르타르 패널의 전단보강에 관한 연구 (Regarding a Shear Strengthening of an Epoxy Mortar Panel for RC Beam Without Shear Strengthening Reinforcing Bar)

  • 이상호;조민수;허재상
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권3호
    • /
    • pp.135-146
    • /
    • 2008
  • 본 연구에서는 에폭시 모르타르 패널을 철근콘크리트 보부재의 전단 보강재로 사용하기 위하여 보강재의 종류와 보강량, 탄소섬유시트의 간격을 변수로 가력실험을 수행하고 부재의 구조적 성능을 파악하였다. 이를 바탕으로 에폭시 모르타르 패널을 철근콘크리트 보부재의 전단 보강재로 사용하기 위한 설계 방법은 $V_c$, $V_s$, $V_{sheet}$, $V_p$의 합으로 전단강도를 가정하였으며, 연구결과에 대한 실험값/제안값의 평균값은 1.10, 표준편차는 8.16%로 나타났다.

EFFECT OF MICROSTRUCTURE ON MECHANICAL PROPERTIES IN FRICTION STIR WELDED CAST A356 ALUMINUM ALLOY

  • Sato, Yutaka S.;Kaneko, Takayasu;Urata, Mitsunori;Kokawa, Hiroyuki
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.493-498
    • /
    • 2002
  • Friction stir welding (FSW) is a relatively new solid-state joining process which can homogenize the heterogeneous microstructure by intensely plastic deformation arising from the rotation of the welding tool. The present study applied the FSW to an A356 aluminum (AI) alloy with the as-cast heterogeneous microstructure in the T6 temper condition, and examined an effect of microstructure on mechanical properties in the weld. The base material consisted of Al matrix with a high density of strengthening precipitates, large eutectic silicon and a lot of porosities. The FSW led to fragment of the eutectic silicon, extinction of the porosities and dissolution of the strengthening precipitates in the Al alloy. The dissolution of strengthening precipitates reduced the hardness of the weld around the weld center and the transverse ultimate tensile strength of the weld. Longitudinal tensile specimen containing only the stir zone showed the roughly same strength as the base material and a much larger elongation. Moreover, Charpy impact tests indicated that the stir zone had remarkably the higher absorbed energy than the base material. The higher mechanical properties of the stir zone were attributed to a homogenization of the as-cast heterogeneous microstructure by FSW.

  • PDF

Effectiveness of steel wire mesh as a strengthening material for masonry walls: A review

  • Richard Badonbok Lyngkhoi;Teiborlang Warjri;Wanraplang Warlarpih;Comingstarful Marthong
    • Structural Monitoring and Maintenance
    • /
    • 제10권2호
    • /
    • pp.117-132
    • /
    • 2023
  • The most prevalent and oldest type of structure is unreinforced masonry (URM) structures; URM walls are still a widely used construction material in India and many other developing countries due to their simplicity, ease of construction, economic sustainability, and ability to be built with locally available materials. URM walls are significantly weak while carrying lateral loads. The poor performance of URM walls during earthquakes has necessitated investigating an effective method for strengthening a newly built masonry building or retrofitting an old structure. Wire mesh, being cost-effective and easily available, satisfies the requirements to strengthen new and old URM buildings. The use of wire mesh to strengthen and retrofit the URM structure is simple to use, quick to construct, and inexpensive, especially in developing nations where heavy machinery and highly qualified labour are lacking. The current paper reviews the effectiveness of steel wire mesh as a reinforcing material for enhancing masonry strength. The finding gave encouraging results for the field application of wire mesh.

확률.신뢰도 기법을 적용한 CFRP 플레이트 표면매립보강 콘크리트 철도교의 임계보강비 산정 (Critical Strengthening Ratio of CFRP Plate Using Probability and Reliability Analysis for Concrete Railroad Bridge Strengthened by NSM)

  • 오홍섭;선종완;오광진;심종성;주민관
    • 콘크리트학회논문집
    • /
    • 제21권6호
    • /
    • pp.681-688
    • /
    • 2009
  • 철도교량은 일반적으로 공용기간동안 진동과 충격에 의한 구조적 영향을 받는다. 이와 같은 이유로 내하력 증진을 위한 보강성능 검토 시 철도교에 작용하는 외부하중에 효율적으로 저항할 수 있는 보강성능이 요구된다. 이 연구에서는 철도교의 공용 중 진동 및 충격하중에 효율적으로 저항할 수 있는 보강공법으로써 NSM 보강공법을 제안하였다. 이는 기존 탄소섬유외부부착 공법에 비해 부착성능 및 보강성능이 우수한 공법이다. NSM 보강공법은 현재 다양한 실험적 연구들이 진행되고 있으나, 실교량으로의 범용적인 적용을 위해서는 보강설계에 필요한 합리적인 보강비 산정이 필수적이다. 이를 위해, 이 연구에서는 재료적 및 기하학적 불확실성이 반영된 확률 신뢰도기반 NSM 보강비 산정방법을 제안하여 임계보강비를 산정하고자 한다. 이를 위해, Monte Carlo Simulation(MCS) 기법으로 도출된 재료 및 단면치수에 대한 불확실성 특성을 내부저항모멘트 설계식에 반영하여, 외부활하중의 불확실성 특성이 반영된 외부하중모멘트에 대한 안전도 평가를 수행하였으며, 목표신뢰성지수 3.5를 만족할 수 있도록 하는 CFRP 플레이트의 임계보강비를 산출하였다.

벨크로를 이용한 FRP 플레이트 보강공법의 시공공법 개선 (Construction Method Improvement of the FRP-plate Strengthening Method using the Velcro)

  • 홍건호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권6호
    • /
    • pp.225-232
    • /
    • 2008
  • 본 논문에서는 FRP 보강재의 부착방식에 따른 RC보의 휨보강 성능평가에 대하여 연구하였다. 기존의 FRP 휨보강공법은 보강재의 형태에 따라 크게 FRP 쉬트 보강공법과 FRP 플레이트 보강공법으로 분류될 수 있으며, 각 공법은 에폭시의 양생기간동안 쉬트의 들뜸이 발생하지 않도록 주의해야하거나, 앵커설치 등 시공이 복잡하며, 인력이 많이 소요되는 단점이 있다. 이러한 문제점을 개선하기 위하여 본 논문에서는 Velcro형 고정재를 사용하여 FRP 플레이트를 임시 고정하는 보강공법을 제안하였고, 이에 대한 휨보강 성능평가 실험을 실시하였다. 실험은 FRP보강재의 부착방식을 변수로 하여 총 4개 실험체에 대하여 수행하였다. 실험결과 벨크로형 FRP판 보강공법은 타 공법에 비하여 우수한 시공성을 가짐과 동시에 휨내력이나 연성도 면에서도 우수한 보강성능을 확보하고 있는 것으로 나타났다.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

Minimum cost strengthening of existing masonry arch railway bridges

  • Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.271-282
    • /
    • 2020
  • The preservation of historic masonry-arch railway bridges is of paramount importance due to their economic benefits. These bridges which belong to past centuries may nowadays be expected to carry loads higher than those for which they were designed. Such an increase in loads may be because of increase in transportation speed or in the capacity of freight-wagons. Anyway, adequate increase in their load-carrying-capacity through structural-strengthening is required. Moreover, the increasing costs of material/construction urge engineers to optimize their designs to obtain the minimum-cost one. This paper proposes a novel numerical optimization method to minimize the costs associated with strengthening of masonry-arch railway bridges. To do so, the stress/displacement responses of Sahand-Goltappeh bridge are assessed under ordinary train pass as a case study. For this aim, 3D-Finite-Element-Model is created and calibrated using experimental test results. Then, it is strengthened such that following goals are achieved simultaneously: (1) the load-carrying-capacity of the bridge is increased; (2) the structural response of the bridge is reduced to a certain limit; and, (3) the costs needed for such strengthening are minimized as far as possible. The results of the case study demonstrate the applicability/superiority of the proposed approach. Some economic measures are also recommended to further reduce the total strengthening cost.

Dynamic characteristics and fatigue damage prediction of FRP strengthened marine riser

  • Islam, A.B.M. Saiful
    • Ocean Systems Engineering
    • /
    • 제8권1호
    • /
    • pp.21-32
    • /
    • 2018
  • Due to the escalation in hydrocarbon consumption, the offshore industry is now looking for advanced technology to be employed for deep sea exploration. Riser system is an integral part of floating structure used for such oil and gas extraction from deep water offering a system of drill twines and production tubing to spread the exploration well towards the ocean bed. Thus, the marine risers need to be precisely employed. The incorporation of the strengthening material, fiber reinforced polymer (FRP) for deep and ultra-deep water riser has drawn extensive curiosity in offshore engineering as it might offer potential weight savings and improved durability. The design for FRP strengthening involves the local design for critical loads along with the global analysis under all possible nonlinearities and imposed loadings such as platform motion, gravity, buoyancy, wave force, hydrostatic pressure, current etc. for computing and evaluating critical situations. Finite element package, ABAQUS/AQUA is the competent tool to analyze the static and dynamic responses under the offshore hydrodynamic loads. The necessities in design and operating conditions are studied. The study includes describing the methodology, procedure of analysis and the local design of composite riser. The responses and fatigue damage characteristics of the risers are explored for the effects of FRP strengthening. A detail assessment on the technical expansion of strengthening riser has been outlined comprising the inquiry on its behavior. The enquiry exemplifies the strengthening of riser as very potential idea and suitable in marine structures to explore oil and gas in deep sea.

기둥 파괴모드에 따른 학교 건물 철골 가새 보강의 효율성 (The Efficiency of Steel Brace Strengthening of School Buildings according to the Failure Mode of Columns)

  • 이희섭;김태완
    • 한국지진공학회논문집
    • /
    • 제27권2호
    • /
    • pp.101-109
    • /
    • 2023
  • Steel brace strengthening is the most popular seismic rehabilitation method for school buildings. This is because the design can be conducted by using relatively easy nonlinear pushover analysis and standard modeling in codes. An issue with steel brace strengthening is that the reinforced building should behave elastically to satisfy performance objectives. For this, the size of steel braces should be highly increased, which results in excessive strengthening cost by force concentration on existing members and foundations due to the considerable stiffness and strength of the steel braces. The main reason may be the brittle failure mode of columns, so this study investigated the relationship between the efficiency of steel brace strengthening and column failure modes. The result showed that the efficiency is highly dependent on the shear capacity ratio of columns and structural analysis methods. School buildings reinforced by steel braces do not need to behave elastically when the shear capacity ratio is low, and pushover analysis is used, which means reducing steel material is possible.