• Title/Summary/Keyword: material homogeneity

Search Result 160, Processing Time 0.034 seconds

Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations

  • She, Gui-Lin;Ren, Yi-Ru;Xiao, Wan-Shen;Liu, Haibo
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.729-736
    • /
    • 2018
  • This paper studies thermal buckling and post-buckling behaviors of functionally graded materials (FGM) tubes subjected to a uniform temperature rise and resting on elastic foundations via a refined beam model. Compared to the Timoshenko beam theory, the number of unknowns of this model are the same and no correction factors are required. The material properties of the FGM tube vary continuously in the radial direction according to a power function. Two ends of the tube are assumed to be simply supported and in-plane boundary conditions are immovable. Energy variation principle is employed to establish the governing equations. A two-step perturbation method is adopted to determine the critical thermal buckling loads and post-buckling paths of the tubes with arbitrary radial non-homogeneity. Through detailed parametric studies, it can be found that the tube has much higher buckling temperature and post-buckling strength when it is supported by an elastic foundation.

Hot Petroleum Drying Method to the Preparation of Multicomponent Oxide Ceramic Material (다성분계 산화물의 요업재료 제조를 위한 석유 증발 건조 방법)

  • 변수일
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.3
    • /
    • pp.163-168
    • /
    • 1977
  • As a wet chemical drying process "hot petroleum drying method" was applied and developed for preparing uniformly fine oxide powder with high purity and sinterreactivity. Using this method solution of sulfates was dried in hot petroleum bath (~17$0^{\circ}C$) to sulfate powder from which corresponding mullite doped by Fe3+ ion was formed. Particle size, shape, decomposition by heat, and phase identification of sulfate andoxide powders determined by DTA, TGA, X-ray diffraction, analysis and electron microscopy: sulfate powder prepared by this drying method is an intimate mixture of the amorphous form of uniformly and finely distributed spherical particles (0.05-0.1$\mu$). Mullitization with the sulfate powder occurs at 110$0^{\circ}C$ in air. The morphology of mullite particle made by firing the sulfate powder at 135$0^{\circ}C$ in oxygen atmosphere is granular of 0.1-0.3$\mu$ in size. This drying process proved to be a very effective method for preparing fine, homogeneous, and highly sinterreactive multicomponent oxide powder without conventional ceramic process of mixing, milling, and granulating. This process can be also applied for preparing electronic ceramic materials which are requisite for high purity and homogeneity.mogeneity.

  • PDF

The Effects of Compliance and Self Efficacy on Nursing Education Program for Pneumonia Patient (폐렴환자를 위한 간호교육프로그램이 순응도 및 자기효능감에 미치는 효과)

  • Kang, Kyung Sook;Choi, Hanna
    • Journal of Korean Biological Nursing Science
    • /
    • v.22 no.3
    • /
    • pp.184-191
    • /
    • 2020
  • Purpose: The purpose of this study was to validate the effects that the structured pamphlet and education through tablets regarding the daily life management and disease nursing education program has towards pneumonia patients in compliance, and self-efficacy. Methods: This study used the quasi-experimental study design based upon the nonequivalent control group pretest-posttest design. A total of 100 patients-50 patients who were hospitalized February 2020 as the control group and 50 patients who were hospitalized March 2020 as the experimental group - were used as material for the statistical analysis. These data were analyzed with a significance level of p< .05 using the SPSS WIN 21.0 program. Results: The patients' compliance, and self-efficacy had no significance difference between the two previous scores, meaning homogeneity in the two groups. Through verifying the experimental group who had disease and daily-life managing nursing education will have higher scores in compliance (t= 20.95, p< .001), and self-efficacy (t= 17.24, p< .001) than the control group who had not received those education, were statistically significantly different leading to all hypothesis being supported. Conclusion: For improving pneumonia patients' compliance, the methods should be simple, easy to understand, effective in numerous clinical situations, require constant education and reinforcement, and periodic nursing education program.

Study on Synthesis of Tricalciumaluminate Clinker by Hydrate-burning Method (수화물 소성법에 의한 알루민산삼칼슘 클링커의 합성에 관한 연구)

  • Ki, Tae Kyung;Song, Tae Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.517-523
    • /
    • 2007
  • For the preparation of tricalciumaluminate $(C_3A)$ clinker, in traditional clinkering method using oxides and carbonates as a raw material, uneconomical repetition of burning have been necessary to avoid the melting of clinker by eutectic reaction in the system $CaO-Al_2O_3$. In this study, special starting raw materials for the clinker burning were prepared from a mixture of oyster shell and aluminium hydroxide by heating to $1100^{\circ}C$ and hydrating at $30^{\circ}C$. The starting raw materials, hardened body with weak hydraulic strength, were mainly composed of $C_3AH_6$ formed by resolution-precipitation mechanism of the system $CaO-Al_2O_3-H_2O$. By heating them, relatively pure $C_3A$ clinker could be obtained by one-time burning at the fairly lower temperature than that of conventional method. The easier formation of $C_3A$ clinker seemed to be caused by higher compositional homogeneity and stoichiometry of the starting materials, high surface area and crystallographic instability of the thermally decomposed products, and the catalytic effect of decomposed moisture on the early-stage crystallization of calciumaluminates. The basic hydration behavior of the clinker was also confirmed.

Elastic solution of a curved beam made of functionally graded materials with different cross sections

  • Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.659-672
    • /
    • 2015
  • This research deals with the analytical solution of a curved beam with different shapes made of functionally graded materials (FGM's). It was assumed that modulus of elasticity is graded along the thickness direction of curved beam based on a power function. The beam was loaded under pure bending. Using the linear theory of elasticity, the general relation for radial distribution of radial and circumferential stresses of arbitrary cross section was derived. The effect of nonhomogeneity was considered on the radial distribution of circumferential stress. This behavior can be investigated for positive and negative values of nonhomogeneity index. The novelty of this study is application of the obtained results for different combination of material properties and cross sections. Achieved results indicate that employing different nonhomogeneity index and selection of various types of cross sections (rectangular, triangular or circular) can control the distribution of radial and circumferential stresses as designer want and propose new solutions by these options. Increasing the nonhomogeneity index for positive or negative values of nonhomogeneity index and for various cross sections presents different behaviors along the thickness direction. In order to validate the present research, the results of this research can be compared with previous result for reachable cross sections and non homogeneity index.

Development of Alkali Metal Thermal-to-Electric Converter Unit Cells Using Mo/TiN Electrode

  • Seog, Seung-won;Choi, Hyun-Jong;Kim, Sun-Dong;Lee, Wook-Hyun;Woo, Sang-Kuk;Han, Moon-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.200-204
    • /
    • 2017
  • Molybdenum (Mo), an electrode material of alkali metal thermal-to-electric converters (AMTEC), facilitates grain growth behavior and forms Mo-Na-O compounds at high operating temperatures, resulting in reduced performance and shortened lifetime of the cell. Mo/TiN composite materials have been developed to provide a solution for such issues. Mo is a metal that possesses excellent electrical properties, and TiN is a ceramic compound with high-temperature durability and catalytic activity. In this study, a dip-coating process with an organic solvent-based slurry was used as an optimal coating method to achieve homogeneity and stability of the electrodes. Cell performance was evaluated under various conditions such as the number of coatings, ranging from 1 to 3 times, and heat treatment temperatures of $800-1100^{\circ}C$. The results confirmed that the cell yielded a maximum power of 9.99 W for the sample coated 3 times and heat-treated at $900^{\circ}C$.

Process Design of Multi-Pass Shape Drawing of Wire with Asymmetric Trapezoid Profiles (비대칭 사다리꼴 단면 선재의 다단 인발 공정설계)

  • Ji, S.I.;Lee, K.H.;Hong, L.S.;Jung, J.Y.;Kim, J.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.187-193
    • /
    • 2015
  • The objective of the current study is to determine cross-sectional profile of intermediate dies in order to improve the plastic strain homogeneity which directly affects not only the dimensional accuracy but also the mechanical properties of final product by redesigning the intermediate dies using the conventional electric field analysis (EFA) method. Initially, the multi-pass shape wire drawing was designed by using the equivalent potential lines from EFA. The area reduction ratio was calculated from the number of passes in multi-pass shape wire drawing but constrained by the capacity of the drawing machine and the drawing force. In order to compensate for a concentration of strain in a region of the cross section of the wire, the process for multi pass wire drawing from initial round material to an intermediate die was redesigned again using the electric field analysis. Both drawing process designs were simulated by the finite element method in which the strain distribution and standard deviation plastic strain of the cross section of drawn wires were examined.

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture

  • Raminnea, M.;Biglari, H.;Tahami, F. Vakili
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.153-186
    • /
    • 2016
  • This paper addresses temperature-dependent nonlinear vibration and instability of embedded functionally graded (FG) pipes conveying viscous fluid-nanoparticle mixture. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Reddy third-order shear deformation theory (RSDT) of cylindrical shells are developed using the strain-displacement relations of Donnell theory. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on energy method and Hamilton's principal, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as mode numbers, nonlinearity, fluid velocity, volume percent of nanoparticle in fluid, gradient index, elastic medium, boundary condition and temperature gradient are discussed. Numerical results indicate that with increasing the stiffness of elastic medium and decreasing volume percent of nanoparticle in fluid, the frequency and critical fluid velocity increase. The presented results indicate that the material in-homogeneity has a significant influence on the vibration and instability behaviors of the FG pipes and should therefore be considered in its optimum design. In addition, fluid velocity leads to divergence and flutter instabilities.

Evaluation of proficiency and improvement of accuracy on the analysis of brominated flame retardants (PBDEs) in ABS polymer (ABS수지 중 polybrominated diphenyl ether(PBDE)류 분석 숙련도 평가 및 정확도 향상)

  • Ryu, Jehoon;Kim, Dalho
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.446-452
    • /
    • 2015
  • In order to evaluate and improve the ability of Korean testing laboratories to measure Polybrominated diphenyl ethers in acrylonitrile-butadiene-styrene (ABS), a proficiency test was organised by Korea Research Institute of Standards and Science (KRISS) based on ISO/IEC 17043. The proficiency test material used was 10 g of a granular ABS fortified with a mixture of congeners of PBDE (BDE-154, 183, 206, 209). Homogeneity and stability were investigated to assess the adequacy of the test material. The certified value established by KRISS based on the national reference was used for assigned value of each PBDE. The test materials were distributed to the 16 participating laboratories. The participating laboratories were requested to analyse the samples employing the methods used in their routine analysis. Each laboratory was given it’s own code to secure the anonymity. Participants results were evaluated with z-scores according to ISO/IEC 17043. The standard deviation for proficiency assessment was set by standard deviation of the participants results except for outlier. The results, the laboratory's performance and improvement of accuracy were discussed.

Defects and Grain Boundary Properties of Cr-doped ZnO (Cr을 첨가한 ZnO의 결함과 입계 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.949-955
    • /
    • 2009
  • In this study, we investigated the effects of Cr dopant (1.0 at% $Cr_2O_3$ sintered at $1000^{\circ}C$ for 1 h in air) on the bulk trap (i.e. defect) and interface state levels of ZnO using dielectric functions ($Z^*$, $M^*$, $Y^*$, $\varepsilon^*$, and $tan{\delta}$), admittance spectroscopy (AS), and impedance-modulus spectroscopy (IS & MS). For the identification of the bulk trap levels, we examine the zero-biased admittance spectroscopy and dielectric functions as a function of frequency and temperature. Impedance and electric modulus spectroscopy is a powerful technique to characterize grain boundaries of electronic ceramic materials as well. As a result, three kinds of bulk defect trap levels were found below the conduction band edge of ZnO in 1.0 at% Cr-doped ZnO (Cr-ZnO) as 0.11 eV, 0.21 eV, and 0.31 eV. The overlapped defect levels ($Zn^{..}_i$ and $V^{\cdot}_0$) in admittance spectra were successfully separated by the combination of dielectric function such as $M^*$, $\varepsilon^*$, and $tan{\delta}$. In Cr-ZnO, the interfacial state level was about 1.17 eV by IS and MS. Also we measured the resistance ($R_{gb}$) and capacitance ($C_{gb}$) of grain boundaries with temperature using impedance-modulus spectroscopy. It have discussed about the stability and homogeneity of grain boundaries using distribution parameter ($\alpha$) simulated with the Z"-logf plots with temperature.