• Title/Summary/Keyword: material evaluation

Search Result 5,395, Processing Time 0.045 seconds

Effect of DEHP Administration on Reproduction in Pregnant Mice Ⅰ. Effect of DEHP Administration on Reproductive Characteristic and Blood Hematological Values in Pregnant Mice (임신중인 생쥐에 DEHP 투여가 번식현상에 미치는 영향 Ⅰ. 임신중인 생쥐에 DEHP 투여가 분만 후 번식특성과 혈액성분에 미치는 영향)

  • Park, Dong-Heon;Jang, Hyun-Yong;Park, Choon-Keun;Cheong, Hee-Tae;Kim, Choung-Ik;Yang, Boo-Keun
    • Development and Reproduction
    • /
    • v.8 no.2
    • /
    • pp.85-89
    • /
    • 2004
  • This study is illustrated that 1) the effects of DEHP administration on body weight, sex ratio and litter size on 19 days in the prenatal period 2) the effects of reproductive organ weight and blood hematological values on 25 days postpartum in pregnant mice. DEHP was administrated to pregnant mice by intraperitoneal injection at 0, 0.5, 1.0 and 10.0mg/kg B.W from day 1 to day 16 in the gestation period with 5 times at 3 days interval. There were no significantly differences in the material body weight, litter size and sex ratio on 19 days in the prenatal period. The body weight of the fatal male mice was slightly lower in 1.0 and 10.0mg DEHP groups than in any other groups. The reproductive organ weight and hematological values in dam mice on 25 days postpartum were not affected by DEHP administration. The histological evaluation of ovary in dam mice on 25 days after dilivery was not different in all experimental groups, but the endometriosis and edema of uterus in dam mice were significantly decreased in 0.5mg DEHP group than that of control group.These results indicate that the administration of low concentration of DEHP was not affected on reproductive characteristic and blood hematological values in pregnant mice.

  • PDF

Evaluation of Biogas Production Rate by using Various Electrodes Materials in a Combined Anaerobic Digester and Microbial Electrochemical Technology (MET) (미생물 전기화학 기술이 적용된 단일 혐기성소화조에서 전극재질에 따른 바이오가스 생성 효율 평가)

  • Shin, Wonbeom;Park, Jungyu;Lee, Beom;Kim, Yonggeun;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • MET (Microbial Electrochemical Technology), such as MFC (Microbial Fuel Cell) and MEC (Microbial Electrolysis Cell), is a promising technology for producing sustainable biogas from an anaerobic digester (AD). At current stage, however, the most likely limiting factors, large internal resistances, should be overcome for successful scale up of this technology. Various researchers reported that application of electrode materials containing high current density, increase of ion strength and conductivity, configuration of electrode are good methods for minimizing internal resistances. Recently, stainless steel is receiving great attention because of not only high performance and durability but also low cost. Therefore, in this study, we evaluate electrochemical characteristics and biogas production rate using various electrode materials and configuration (graphite carbon coated with catalysts ($GC-C_M$) or not (GC), stainless steel mesh (SUS-M) and plate (SUS-P)). As the results, current densities of $GC-C_M$, GC, SUS-P, SUS-M were 2.03, 1.36, 1.04, $1.13A/m^2$, respectively. Methane yields of $GC-C_M$, GC, SUS-P, SUS-M were 0.27, 0.14, 0.19, 0.21 $L-CH_4/g-COD_{rem}$., respectively. Stainless steel shows high current density and methane yield, which are similar as graphite carbon coated with catalysts.

The Study of Drilling Technology and Field Cases for Preventing A Lost Circulation in Fractured Reservoirs (균열저류층에서 이수손실방지를 위한 시추기술 및 현장사례 연구)

  • Kim, Hyun Tae;Hong, Si Chan;Yoon, Jae Pil;Park, Yong Chan
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.63-75
    • /
    • 2016
  • The ratio of fractured reservoir is very high in oil & gas fields around the world. The demand of drilling technology for fractured reservoir is expected to increase continuously if oil and gas prices are economical. The purpose of the review study is to help operator or driller in selecting of proper drilling technology for preventing a lost circulation in the fractured formation. In order to achieve this goal, fractured reservoir(formation) they are classified into partial lost circulation formation and total lost circulation formation. In case of partial lost circulation formation, the drilling problem can be solved by using LCM(lost circulation material) mud additive and squeezing cement. For shallow depth, total lost circulation formation can be drilled safely and economically with casing drilling method. Also, for deeper depth, problems of total lost circulation in formation can be solved by applying mud cap, which is one of the drilling methods. This was confirmed through field application such as Italy's Medusa-1 field and Qatar's North field.

The evaluation of image guide system in case of rectal cancer (직장암 치료시 영상유도 시스템의 유용성 평가)

  • Jang, Sewuk;Ahn, Seungkwon;Lee, Sangkyoo;Kim, Jooho;Lee, Wonju;Cho, Jeonghee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.85-92
    • /
    • 2017
  • purpose: Image Guide System offers therapy precise, especially Intensity Modulated Radiation Therapy. However, organs at pelvis have variation and uncertainties each therapy. it brings IG system for verifying patient's position. In this study, analysis the variation at pelvis during rectal cancer radiation therapy. Moreover design the patient re-setup technique and apply to patients. Material and Method: 40 rectal cancer patient who have radiation therapy. The 530 image which acquired from IG system are analyzed. The bone structure, bladder, gas in the rectum, small bowel, soft tissue, weigh loss are evaluated by the criterion. The criterion are classified by best, good, bad and figure out the ratio with count. The re-setup proceed in case of one or over the two get the bad criterion and figure out the ratio of re-setup results: The ideal of therapy ratio is 19.2 % each criterion. And the good for therapy ratio is 54.9 %, the cases of bad for therapy is 25.8 %. The bad cases are have therapy after re-setup with post process. conclusion: Each pre-treatment image that acquired IG system has different results despite of same patients. The 25.8 % need to re-setup in order to unsuitable therapy. It is implies that the IG system is necessary establishing precise treatment plan like IMRT especially rectal cancer.

  • PDF

Evaluation of Deformation Characteristics and Vulnerable Parts according to Loading on Compound Behavior Connector (복합거동연결체의 하중재하에 따른 변형 특성 및 취약부위 산정)

  • Kim, Ki-Sung;Kim, Dong-wook;Ahn, Jun-hyuk
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.524-530
    • /
    • 2019
  • Purpose: In this paper, we construct a detailed three-dimensional interface element using a three-dimensional analysis program, and evaluate the composite behavior stability of the connector by applying physical properties such as the characteristics of general members and those of reinforced members Method: The analytical model uses solid elements, including non-linear material behavior, to complete the modeling of beam structures, circular flanges, bolting systems, etc. to the same dimensions as the design drawing, with each member assembled into one composite behavior linkage. In order to more effectively control the uniformity and mesh generation of other element type contact surfaces, the partitioning was performed. Modeled with 50 carbon steel materials. Results: It shows the displacement, deformation, and stress state of each load stage by the contact adjoining part, load loading part, fixed end part, and vulnerable anticipated part by member, and after displacement, deformation, The effect of the stress distribution was verified and the validity of the design was verified. Conclusion: Therefore, if the design support of the micro pile is determined based on this result, it is possible to identify the Vulnerable Parts of the composite behavior connector and the degree of reinforcement.

Evaluation of Silicon Carbide (SiC) for Deep Borehole Disposal Canister (심부시추공 처분용기 재료로서 SiC 세라믹의 적합성 평가)

  • LEE, Minsoo;LEE, Jongyoul;CHOI, Heuijoo;YOO, MalGoBalGaeBitNaLa;JI, Sunghoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • To overcome the low mechanical strength and corrosion behavior of a carbon steel canister at high temperature condition of a deep borehole, SiC ceramics were studied as an alternative material for the disposal canister. In this paper, a design concept for a SiC canister, along with an outer stainless steel container, was proposed, and its manufacturing feasibility was tested by fabricating several 1/3 scale canisters. The proposed canister can contain one PWR assembly. The outer container was also prepared for the string formation of SiC canisters. Thermal conductivity was measured for the SiC canister. The canister had a good thermal conductivity of above $70W{\cdot}m^{-1}{\cdot}K^{-1}$ at $100^{\circ}C$. The structural stability was checked under KURT environment, and it was found that the SiC ceramics did not exhibit any change for the 3 year corrosion test at $70^{\circ}C$. Therefore, it was concluded that SiC ceramics could be a good alternative to carbon steel in application to deep borehole disposal canisters.

The Physical Properties of Port Type Crack Injection Method Using Latex Elastic Storage Tube (라텍스 탄성 저장관을 활용한 포트식 균열주입 공법의 물리적 특성에 관한 연구)

  • Kim, Eun-Young;Sho, Kwang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.68-75
    • /
    • 2018
  • In this study, to solve the problems of the conventional crack repair and injection method, high elasticity latex was used as the material of the storage tube to withstand the high pressure in the center part differently from the general port. When the repair solution was injected into the crack part, The TPS method was developed so that the air existing in the TPS can be discharged. In addition, a new infusion port in which a valve blocking the backflow of the remediation solution was installed at the injection port was developed and the physical characteristics of the port were analyzed. As a result of the evaluation, it was found that the filling rate of the remedial solution was improved compared to the existing ordinary injector method, and the cracks were completely filled in the test conditions. Compressive strength and tensile strength after repair showed about 20% decrease after repair in case of using ordinary injector method, while TPS method showed about 2~7% increase after repair. The results of this study showed that the injection port method using the elastic storage tube increased the injection performance and the quality after repair compared to the conventional injector method. The result of this study is expected to be utilized as the basic data for application and commercialization of the result to the practical structure.

Combustion Characteristics of Bamboo Charcoal Boards (대나무숯 성형보드의 연소특성)

  • Park, Sang-Bum;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The fire retardant bamboo charcoal (BC) boards were manufactured for interior building materials in this study, The BC boards were manufactured by mixing and pressing of the bamboo charcoal, expanded vermiculite, and inorganic binder. The combustion behaviors of the BC boards were investigated using a cone calorimeter at an incident heat flux of 50 kW/$m^2$. Three building materials (plywood, BC board of Japan, and gypsum board) were used to observe the burning behaviors of weight loss, total heat release rate, and maximum heat release rate. Surface test and toxicity evaluation of the BC board were also conducted. The weight loss of the BC board (12.0%) was lower than the nonflammable gypsum board (15.6%) after burning of 10 min. Total heat release of the BC was 3 MJ/$m^2$ (KS standard 8 MJ/$m^2$) and total heat release rate of the BC was 20 kW/$m^2$ (KS standard 200 kW/$m^2$). Therefore, the BC boards were adjustable for the third-grade flame retardant building materials. External appearance change and mouse toxicity were not found in the BC boards after the combustion test.

Performance Evaluation for Bending Strength and Tensile Type Shear Strength of GFRP Reinforced Laminated Wooden Pin (GFRP보강적층목재핀의 휨강도 및 인장형 전단내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Kim, Dae-Gil;Kim, Sang-Il;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.258-265
    • /
    • 2014
  • By replacing the previous metal connector on the joints of timber structure, the GFRP reinforced laminated wooden pin was produced using a wooden material and Glass fiber reinforced plastic(GFRP) composite laminate. In addition, using the reinforced wooden pin, the tensile type shear strength test was conducted. Based on the result of the bending strength test of the reinforced laminated wooden pin according to the GFRP arrangement, a specimen(Type-A) with a single insertion of GFRP for each layer have shown the most favorable performance. Also, it was verified that densified specimen hot pressed for an hour at the temperature of $150^{\circ}C$ and with the oppression pressure $1.96N/mm^2$ have shown the improved performance of 1.57 times than the specimen without the densification. And in the bending strength test considering the load direction, edgewise have shown a higher performance of 3.51 times than the flatwise. A shear strength test was conducted using the Type-A reinforced laminated wooden pin which have shown a moderate performance on the test. Based on the test conducted by differentiating the type of the joint plate and the connector, compared to the specimen(Type-DS) applied with the drift pin and steel plate, the specimen( Type-WL) applied with the GFRP reinforced laminated wooden pin and GFRP reinforced wooden laminated plate have shown 1.12 times higher shear strength and also have shown an excellent toughness even after the maximum load.

Application Evaluation of Physical and Strength Properties of Paperboard by Kraft Pulp Mixing Made from Agricultural Byproducts (농업부산물 크라프트펄프의 혼합에 따른 판지의 물성변화)

  • Lee, Ji-Young;Lim, Gi-Baek;Kim, Sun-Young;Park, Jong-Hye;Kim, Eun-Hea;Sung, Yong Joo;Heo, Young-Jun;Kim, Young-Hun;Kim, Youn-Ho;Lee, Se-Ran
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.5
    • /
    • pp.43-50
    • /
    • 2014
  • The cultivation of agricultural crops results in the generation of agricultural byproducts. Researchers have reported that these materials can be useful in a variety of applications. However, over 50% of them are currently discarded because of the lack of specific technologies in industrial applications. Therefore, effective and specific applications must be developed in order to manufacture high-quality materials using discarded lignocellulosic resources. In this study, we determined the possibility of using kraft pulp from major agricultural byproducts as a raw material for the manufacture of paperboard. Rice husks, peanut husks, and garlic stems were obtained and used to prepare many kinds of kraft pulps by controlling the active alkali, sulfidity, reaction time, and liquor ratio. After the production of these kraft pulps, handsheets were manufactured by mixing them with KOCC. After preconditioning, the physical properties and strengths of the handsheets were measured according to the TAPPI test methods. The shapes, lengths, and widths of the pulp fibers varied according to the type of agricultural byproduct and the kraft pulping conditions. Rice husk and garlic stem pulps manufactured under mild pulping conditions resulted in handsheets of higher bulk than other pulps. Garlic stem pulps manufactured under mild pulping conditions were stronger than rice husk pulps and peanut husk pulps.