• 제목/요약/키워드: material evaluation

검색결과 5,376건 처리시간 0.042초

볼 압입시험을 이용한 2상 주조 스테인리스강의 열화 평가 (Aging Evaluation of Duplex Cast Stainless Steel Using Ball Indentation Test)

  • 김진원
    • 대한기계학회논문집A
    • /
    • 제29권9호
    • /
    • pp.1253-1261
    • /
    • 2005
  • Cast stainless steel (CSS) is thermally aged by a long term exposure in the range of nuclear power plant operating temperature. The thermal aging is a cause of concern for the continued safe and reliable operation of CSS nuclear components. Therefore, an assessment of degradation in material properties of these components has been importantly considered. In this study the ball indentation tests were performed on four cast stainless steels aged at $400^{\circ}C$ for 3600 hours, to investigate the applicability of ball indentation test to the assessment of aging degradation of cast stainless steels. Thus, the reliability of ball indentation test for aged CSS was analyzed by evaluating the scattering of data tested from each material and by comparing tensile properties obtained from ball indentation test and standard tensile test. Also, the tensile properties of aged CSS obtained from ball indentation test were compared with those predicted by the evaluation procedure developed on the basis of material database for aged CSS.

중대사고 조건하의 원자로용기 크리프 거동 민감도 분석 연구 (Sensitivity Study on Creep Behaviors of RPV under Severe Accident conditions)

  • 김태현;장윤석;김민철;이봉상
    • 한국압력기기공학회 논문집
    • /
    • 제13권1호
    • /
    • pp.61-68
    • /
    • 2017
  • Reactor pressure vessel (RPV) under severe accident conditions accompanied by core melting is exposed to direct high-temperature thermal loads. Understanding the creep behavior of the material is one of the most important factors for evaluating the structural integrity at these conditions. While damage evaluation studies have been conducted on critical structures of nuclear power plants through finite element (FE) analyses considering creep behavior, for accurate creep damage evaluation, constitutive equations considered in the FE analyses may have different results depending on the time hardening and strain hardening models as well as the tertiary creep consideration. The purpose of this study is to evaluate the creep damage under severe accident conditions by using FE method for a representative domestic RPV material, SA508 Gr.3. The effect of material hardening models and constitutive equations which are the main variables were also investigated.

원자력 발전소용 이종재(Cu 합금/STS316L) 마찰용접의 최적화와 AE에 의한 실시간 평가에 관한 연구 (Study on Optimization of Dissimilar friction Welding of Nuclear Power Plant Materials (Cu Alloy/STS316L) and Its Real Time AE Evaluation)

  • 유인종;권상우;황성필;공유식;오세규
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.88-93
    • /
    • 2001
  • In this paper, joints of Cu-1Cr-0.1Zr alloy to STS316L were performed by friction welding method. Particularly, Cu-1Cr-0.1Zr alloy is attractive candidate as nuclear power plant material and exibit the best combination of high strength and good electrical and thermal conductivity of any copper alloy examined. The stainless steel is a structural material while copper alloy acts as a heat sink material for the surface heat flux in the first wall. So, in this paper, not only the development of optimizing of friction welding with more reliability and more applicability but also the development of in-process real-time weld quality (such as strength and toughness) evaluation technique by acoustic emission for friction welding of such nuclear reactor component of Cu-1Cr-0.1Zr alloy to STS316L steel sere performed.

  • PDF

초음파에 의한 발전소 고온배관재료의 크리프손상 평가 (Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Test Method)

  • 이상국;정민화
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.99-107
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions which are high temperature and high pressure for an extended period time. Such material degradation leads to various component failures causing serious accidents at the plants. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this paper, artificial creep degradation test and ultrasonic measurement for their creep degraded specimens have been carried out for the purpose of evaluation for creep damage which can occur in high-temperature pipeline of fossil power plant. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep degradationtests using life prediction formula were carried out. As a result of ultrasonic tests for crept specimens, we confirmed that the sound velocity decreased and the attenuation coefficient linearly increased in proportion to the increase of creep fractiin(${\phi}$c).

  • PDF

T-ray를 이용한 풍력터빈 브레이드 비파괴결함평가 (Nondestructive Evaluation of the Turbine Blade of Wind Energy By Using T-Ray)

  • 임광희;정종안;;이길성
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.102-108
    • /
    • 2012
  • A study of terahertz waves (T-ray) was made for the nondestructive evaluation of FRP (Fiber reinforced plastics) composite materials. The to-be-used systems were time domain spectroscopy (TDS) and continuous wave (CW). The composite materials investigated include both turbine blades of wind energy (non-conducting polymeric composites) and conducting carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse was not able to detect a material with conductivity. This was demonstrated in CFRP (Carbon fiber reinforced plastics) laminates. Refractive index (n) was defined as one of mechanical properties; so a method was solved in order solve the "n" in the material with the cut parts of the turbine blades of wind energy. The defects and anomalies investigated by terahertz radiation were foreign material inclusions and simulated disband. Especially, it is found that the T-ray went through the turbine blade with greater thickness (about 90mm).

아연공기이차전지용 La1-xSrxCoO3 양극촉매의 제조 및 이를 적용한 양극의 전기화학적 특성연구 (Synthesis and Electrochemical Evaluation of La1-xSrxCoO3 Cathode Material for Zinc Air Secondary Batteries Application)

  • 엄승욱;선양국
    • 한국전기전자재료학회논문지
    • /
    • 제21권5호
    • /
    • pp.447-452
    • /
    • 2008
  • We synthesized nano-sized $La_{1-x}Sr_xCoO_3$ ($x=0.1{\sim}0.4$) cathode catalyst for the zinc air secondary batteries by citrate method, And we measured the cathode's electrochemical characteristics according to content of strontium compose the cathode catalyst. We controlled the pH of precursor solution by 10 in the process of manufacturing the precursor, We heat treated the prepared precursor at various calcination temperature ($500{\sim}900^{\circ}C$), and examined the optimum calcinations temperature by XRD analysis and electrochemical evaluation. We examined the ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) performance of the prepared $La_{1-x}Sr_xCoO_3$ catalyst powder. When we consider ORR and OER performance simultaneously, $La_{0.7}Sr_{0.3}CoO_3$ catalyst has shown the best performance because of its lowest voltage deference between charge and discharge.

MTF 측정을 통한 비정질 셀레늄 기반의 디지털 방사선 검출기의 영상 질 평가에 관한 연구 (Image Quality of Amorphous Selenium DR system using MTF measurement)

  • 석대우;박지군;최장용;남상희;강신원
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.384-387
    • /
    • 2003
  • In this paper, the evaluation of image quality was performed for digital radiography which is developing in using amorphous selenium as a photoconductor material for the purpose of offering basic research data and measurement technique about Medical Imaging Quality. So Modulation Transfer Function as a main factor of imaging quality evaluation was investigated by slit method. For measurement of MTF, Nuclear associates. 07-624 Slit camera image was obtained to study the variation of MTF corresponding to changing spatial frequency. And Presampling MTF was estimated by slit camera image with $10\;{\mu}m$ width at Digital Radiography. In this study, the obtained data demonstrates that the clinical value of a direct conversion type digital radiation detector using the amorphous selenium, which is being developed by domestic technology.

  • PDF

Low-cycle fatigue evaluation for girth-welded pipes based on the structural strain method considering cyclic material behavior

  • Lee, Jin-Ho;Dong, Pingsha;Kim, Myung-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.868-880
    • /
    • 2020
  • One of the main concerns in the structural integrity of offshore pipelines is mechanical damage from external loads. Pipelines are exposed to fatigue failure in welded joints due to geometric discontinuity. In addition, fatigue loads such as currents, waves, and platform motions may cause significant plastic deformation and fracture or leakage within a relatively low-cycle regime. The 2007 ASME Div. 2 Code adopts the master S―N curve for the fatigue evaluation of welded joints based on the mesh-insensitive structural stress. An extension to the master S―N curve was introduced to evaluate the low-cycle fatigue strength. This structural strain method uses the tensile properties of the material. However, the monotonic tensile properties have limitations in describing the material behavior above the elastic range because most engineering materials exhibit hardening or softening behavior under cyclic loads. The goal of this study is to extend the cyclic stress-strain behavior to the structural strain method. To this end, structural strain-based procedure was established while considering the cyclic stress-strain behavior and compared to the structural strain method with monotonic tensile properties. Finally, the improved prediction method was validated using fatigue test data from full-scale girth-welded pipes.

입도분석에 기반한 Deep Neural Network를 이용한 최대 건조 단위중량 예측 모델 평가 (Evaluation of Maximum Dry Unit Weight Prediction Model Using Deep Neural Network Based on Particle Size Analysis)

  • 김명환
    • 한국농공학회논문집
    • /
    • 제65권3호
    • /
    • pp.15-28
    • /
    • 2023
  • The compaction properties of the soil change depending on the physical properties, and are also affected by crushing of the particles. Since the particle size distribution of soil affects the engineering properties of the soil, it is necessary to analyze the material properties to understand the compaction characteristics. In this study, the size of each sieve was classified into four in the particle size analysis as a material property, and the compaction characteristics were evaluated by multiple regression and maximum dry unit weight. As a result of maximum dry unit weight prediction, multiple regression analysis showed R2 of 0.70 or more, and DNN analysis showed R2 of 0.80 or more. The reliability of the prediction result analyzed by DNN was evaluated higher than that of multiple regression, and the analysis result of DNN-T showed improved prediction results by 1.87% than DNN. The prediction of maximum dry unit weight using particle size distribution seems to be applied to evaluate the compacting state by identifying the material characteristics of roads and embankments. In addition, the particle size distribution can be used as a parameter for predicting maximum dry unit weight, and it is expected to be of great help in terms of time and cost of applying it to the compaction state evaluation.

Evaluation of TlBr semiconductor detector in gamma camera imaging: Monte Carlo simulation study

  • Youngjin Lee;Chanrok Park
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4652-4659
    • /
    • 2022
  • Among the detector materials available at room temperature, thallium bromide (TlBr), which has a relatively high atomic number and density, is widely used for gamma camera imaging. This study aimed to verify the usefulness of TlBr through quantitative evaluation by modeling detectors of various compound types using Monte Carlo simulations. The Geant4 application for tomographic emission was used for simulation, and detectors based on cadmium zinc telluride and cadmium telluride materials were selected as a comparison group. A pixel-matched parallel-hole collimator with proven excellent performance was modeled, and phantoms used for quality control in nuclear medicine were used. The signal-to-noise ratio (SNR), contrast to noise ratio (CNR), sensitivity, and full width at half maximum (FWHM) were used for quantitative analysis to evaluate the image quality. The SNR, CNR, sensitivity, and FWHM for the TlBr detector material were approximately 1.05, 1.04, 1.41, and 1.02 times, respectively, higher than those of the other detector materials. The SNR, CNR and sensitivity increased with increasing detector thickness, but the spatial resolution in terms of FWHM decreased. Thus, we demonstrated the feasibility and possibility of using the TlBr detector material in comparison with commercial detector materials.