• 제목/요약/키워드: material element

검색결과 5,585건 처리시간 0.029초

유한요소해석을 이용한 자동차 그로멧의 거동에 대한 연구 (A Study on the Behavior for Automotive Grommet by Using FEA)

  • 한창용;이성범
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.74-79
    • /
    • 2010
  • Automotive industries are interested in material development with low weight and recycling. Grommet is made from EPDM at rubber and used as an automotive component. The nonlinear material properties of rubber are important to predict the behaviors of rubber product. This study concerns material property test to achieve stress-strain curve. Curve fitting is carried out to obtain the nonlinear material constant. The nonlinear material constants of rubber are used for the nonlinear finite element analysis. The results of finite element analysis is executed to predict the behavior property of grommet.

경계요소법에 의한 다결정 직교 이방성 재료의 유효 재료 상수의 계산 (Calculation of Effective Material Property for Multi-Grain Orthotropic Material by BEM)

  • 김동은;이상훈;정일중;이석순
    • 대한기계학회논문집A
    • /
    • 제32권9호
    • /
    • pp.713-719
    • /
    • 2008
  • Most of the MEMS parts are made of multi-grain silicon wafer, which is the orthotropic material and its material direction is arbitrary. The reliability of the parts must be guaranteed in order to use for the commercial usage. The need of the structural analysis of its parts emerges an important factor. The material properties of the MEMS parts are calculated by the numerical method in order to reduce a material test. In this study, the effective elastic modulus and its Poisson's ratio are calculated by the boundary element method(BEM) and are compared with the results by the finite element method(FEM).

압축된 고무재료의 정적 변형 해석과 동특성 예측 (Static Deformation Analysis and Dynamic Characteristics Predicton of Compressed Rubber Materials)

  • 김국원;임종락;손희기;안태길
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.472-476
    • /
    • 1999
  • The effect of static preload on the dynamic properties of rubber materials is rather important, especially when good isolation characteristics are required at high frequencies. However, there are still few papers for dynamic characteristics of compressed rubber components. It was demonstrated in reference (4) that for bonded rubber material of a cylindrical shape, a simplified theory equation between linear dynamic and nonlinear static behavior of rubber material was useful to predict their combined effects. This paper presents the second part of the study. It is confirmed that for the compressed rubber material, the stress can be factored into a function of frequency and a function of strain(stretch). The finite element methodis applied to analyze non-linear large deformation of rubber material and its results are compared with those of a simplified theory equation. The predicted dynamic material properties based on non-linear static finite element analyses have a good agreement of experimental results and those based on simplified theory equation.

  • PDF

Inversion of Material Coefficients for Numerical Analysis of Piezoelectric Actuators Using a Three-Dimensional Finite Element Method

  • Joo, Hyun-Woo;Lee, Chang-Hwan;Park, Jong-Seok;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권2호
    • /
    • pp.67-73
    • /
    • 2003
  • In this paper, the impedance of a piezoelectric transducer is calculated using the three-dimensional finite element method. The validity of numerical routine is confirmed experimentally. Using this numerical routine, the effects of material coefficients on piezoelectric actuators characteristics are analyzed. The material constants, which make significant effects, are selected and the relations between material constants are studied. Using these processes, three variables of material constants for a piezoelectric transducer are selected and the design sensitivity method is adopted as an inversion scheme. The validity of the inversion scheme for a piezoelectric transducer is confirmed by applying the proposed method to the sample piezoelectric transducer.

Effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel cross-sections

  • Theofanous, M.;Gardner, L.
    • Steel and Composite Structures
    • /
    • 제12권1호
    • /
    • pp.73-92
    • /
    • 2012
  • The effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel plated cross-sections is investigated in this paper. The focus of the research lies in cross-sections failing by local buckling; member instabilities, distortional buckling and interactions thereof with local buckling are not considered. The cross-sections investigated include rectangular hollow sections (RHS), I sections and parallel flange channels (PFC). Based on previous finite element investigations of structural stainless steel stub columns, parametric studies were conducted and the ultimate capacity of the aforementioned cross-sections with a range of element slendernesses and aspect ratios has been obtained. Various design methods, including the effective width approach, the direct strength method (DSM), the continuous strength method (CSM) and a design method based on regression analysis, which accounts for element interaction, were assessed on the basis of the numerical results, and the relative merits and weaknesses of each design approach have been highlighted. Element interaction has been shown to be significant for slender cross-sections, whilst the behaviour of stocky cross-sections is more strongly influenced by the material strain-hardening characteristics. A modification to the continuous strength method has been proposed to allow for the effect of element interaction, which leads to more reliable ultimate capacity predictions. Comparisons with available test data have also been made to demonstrate the enhanced accuracy of the proposed method and its suitability for the treatment of local buckling in stainless steel cross-sections.

Finite element analysis of shear-critical reinforced concrete walls

  • Kazaz, Ilker
    • Computers and Concrete
    • /
    • 제8권2호
    • /
    • pp.143-162
    • /
    • 2011
  • Advanced material models for concrete are not widely available in general purpose finite element codes. Parameters to define them complicate the implementation because they are case sensitive. In addition to this, their validity under severe shear condition has not been verified. In this article, simple engineering plasticity material models available in a commercial finite element code are used to demonstrate that complicated shear behavior can be calculated with reasonable accuracy. For this purpose dynamic response of a squat shear wall that had been tested on a shaking table as part of an experimental program conducted in Japan is analyzed. Both the finite element and material aspects of the modeling are examined. A corrective artifice for general engineering plasticity models to account for shear effects in concrete is developed. The results of modifications in modeling the concrete in compression are evaluated and compared with experimental response quantities.

이축인장을 받는 철근콘크리트 패널의 정적 유한요소해석에서의 논점 (Issues in Static FE Analysis of Reinforced Concrete Panels subjected to Biaxial Tensile Loads)

  • 이상진;이홍표;이영정
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.569-576
    • /
    • 2003
  • Fundamental issues in static finite element analysis of reinforced concrete panel subjected to biaxial tensile loads are discussed. This paper is trying to bring our attention to the appropriate use of concrete material models such as cracking criteria, tension stiffening model and the steel models which are basically used in the nonlinear finite element analysis of reinforced concrete panels. We mainly investigate the sensitivity of available material models and finite element technologies to the finite element analysis result using our recent reinforced concrete panel experiment result. Throughout this study, we found that the judicious use of the material models and finite element technologies with the sound understanding of structural characteristics can only guarantee the accurate prediction of panel behaviour.

  • PDF

A Novel Electrochemical Method for Sensitive Detection of Melamine in Infant Formula and Milk using Ascorbic Acid as Recognition Element

  • Li, Junhua;Kuang, Daizhi;Feng, Yonglan;Zhang, Fuxing;Xu, Zhifeng;Liu, Mengqin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2499-2507
    • /
    • 2012
  • A novel and convenient electrochemical method has been developed for sensitive determination of melamine (MEL) using ascorbic acid (AA) as the recognition element. The working electrode employed in this method was modified with the nanocomposite of hydroxyapatite/carbon nanotubes to enhance the current signal of recognition element. The interaction between MEL and AA was investigated by fourier transform infrared spectroscopy and cyclic voltammetry, and the experimental results indicated that hydrogen bonding was formed between MEL and AA. Because of the existing hydrogen bonding and electrostatic interaction, the anodic peak current of AA was decreased obviously while the non-electroactive MEL added in. It illustrated that the MEL acted as an inhibitor to the oxidation of AA and the decreasing signals can be used to detect MEL. Under the optimal conditions, the decrease in anodic peak current of AA was proportional to the MEL concentrations ranging from 10 to 350 nM, with a detection limit of 1.5 nM. Finally this newly-proposed method was successfully employed to detect MEL in infant formula and milk, and good recovery was achieved.

Large displacement analysis of inelastic frame structures by convected material frame approach

  • Chiou, Yaw-Jeng;Wang, Yeon-Kang;Hsiao, Pang-An;Chen, Yi-Lung
    • Structural Engineering and Mechanics
    • /
    • 제13권2호
    • /
    • pp.135-154
    • /
    • 2002
  • This paper presents the convected material frame approach to study the nonlinear behavior of inelastic frame structures. The convected material frame approach is a modification of the co-rotational approximation by incorporating an adaptive convected material frame in the basic definition of the displacement vector and strain tensor. In the formulation, each discrete element is associated with a local coordinate system that rotates and translates with the element. For each load increment, the corresponding strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and based on the updated element geometry. The rigid body motion and deformation displacements are decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through the continuous updating of the material frame geometry. A generalized nonlinear function is used to derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show that the proposed approach is capable of investigating large deflection of inelastic planar structures and providing an excellent numerical performance.

알멘 스트립 시험 모사를 이용한 유한요소모델의 유효성 검증 및 잔류응력분포 계산 (Verification of Finite Element Model Using the Almen Strip Test and Its Applications to Calculate Residual Stress Distribution)

  • 양조예;박성호;이영석
    • 소성∙가공
    • /
    • 제21권3호
    • /
    • pp.172-178
    • /
    • 2012
  • We performed a shot peening test and used a 2-D finite element model which predicts the compressive residual stress distribution below the material's surface. In this study, the concept of 'impact cycle' is introduced to account for the irregularity in the shot's impact position during testing. The impact cycle was imbedded in the finite element model. In the shot peening test, shot bombarded a type-A Almen strip surface with different impact velocities. To verify the proposed finite element model, we compared the deformed cross sectional shape of the Almen strips with the shapes computed by the proposed finite element model. Good agreement was noted between measurements and the finite element model predictions. With the verified finite element model, a series of finite element simulations was conducted to compute the residual stress distribution below the material's surface and the characteristics of these distributions are discussed.