• Title/Summary/Keyword: material balance

Search Result 529, Processing Time 0.026 seconds

Size-dependent analysis of functionally graded ultra-thin films

  • Shaat, M.;Mahmoud, F.F.;Alshorbagy, A.E.;Alieldin, S.S.;Meletis, E.I.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.431-448
    • /
    • 2012
  • In this paper, the first-order shear deformation theory (FSDT) (Mindlin) for continuum incorporating surface energy is exploited to study the static behavior of ultra-thin functionally graded (FG) plates. The size-dependent mechanical response is very important while the plate thickness reduces to micro/nano scales. Bulk stresses on the surfaces are required to satisfy the surface balance conditions involving surface stresses. Unlike the classical continuum plate models, the bulk transverse normal stress is preserved here. By incorporating the surface energies into the principle of minimum potential energy, a series of continuum governing differential equations which include intrinsic length scales are derived. The modifications over the classical continuum stiffness are also obtained. To illustrate the application of the theory, simply supported micro/nano scaled rectangular films subjected to a transverse mechanical load are investigated. Numerical examples are presented to present the effects of surface energies on the behavior of functionally graded (FG) film, whose effective elastic moduli of its bulk material are represented by the simple power law. The proposed model is then used for a comparison between the continuum analysis of FG ultra-thin plates with and without incorporating surface effects. Also, the transverse shear strain effect is studied by a comparison between the FG plate behavior based on Kirchhoff and Mindlin assumptions. In our analysis the residual surface tension under unstrained conditions and the surface Lame constants are expected to be the same for the upper and lower surfaces of the FG plate. The proposed model is verified by previous work.

Auto ABLB Audiometry System Supporting One-to-many Model (일 대 다 모델을 지원하는 자동 ABLB 청력 검사 시스템)

  • Song, Bok-Deuk;Kang, Deok-Hun;Shin, Bum-Joo;Kim, Jin-Dong;Jeon, Gye-Rok;Wang, Soo-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.519-524
    • /
    • 2011
  • ABLB (alternate binaural loudness balance) test is one of the medical assessments to diagnose detailed lesion of sensory-neural hearing loss based on a recruitment phenomenon. However, current ABLB audiometry takes an operational model, so called face-to-face model, in which model one audiometrist can assess only one subject at a time. As a result, this face-to-face model leads to expensive audiometrist's labor cost and lengthy wait when there exist many subjects. As a solution, this paper suggests an ABLB audiometry system supporting one-to-many model in which model an audiometrist enables to assess several subjects concurrently. By providing such capabilities as real-time transfer of assessment result, video monitoring of subject and video chat, this solution can provide same effect as face-to-face model but overcome weakness of the existing face-to-face model.

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

Technology Trends in Stainless Steel for Water Splitting Application (스테인레스 강의 수전해 전극 응용기술 동향)

  • Kim, Moonsu;Ha, Jaeyun;Kim, Yong-Tae;Choi, Jinsub
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.2
    • /
    • pp.13-27
    • /
    • 2021
  • Stainless steel, which includes Ni and Cr with Fe balance, is most often applied for a wide range of applications such as structure and equipment material. It is not only suitable for use in these applications due to its good corrosion resistance, but also can be applied to catalyst, supporting material, and current collector due to intrinsic properties of Ni and Fe contained in stainless steel. Therefore, in recent years, a lots of surface treatment methods have been studied to activate stainless steel, developing application of water splitting system. In this review paper, the research on the surface treatment technology of stainless steel for water splitting is summarized. It is expected to be able to propose the diverse surface treatment approaches of stainless steel for application to low-cost and highly efficient water splitting electrode.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiCl-$CaCl_2-Zn(NO_3)_2$ Solution at Solar Evaporator Heating (LiCl-$CaCl_2-Zn(NO_3)_2$ 수용액을 사용하는 흡수 2중효용 시스템에서 태양열을 증발기 열원으로 사용하는 난방기의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.87-94
    • /
    • 2007
  • In this paper, with water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture which utilizes solar energy at the evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture than for the water-LiBr pair, and FR is lower for the former.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr- LiSCN Solution As $20{\sim}40^{\circ}C$ Range Solar Evaporator Heating (태양열을 증발기 열원으로 사용($20{\sim}40^{\circ}C$범위)하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.73-81
    • /
    • 2006
  • In this paper, with water-LiBr-LiSCN mixture which utilizes solar energy as mid temperature range evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.

A Study on the Expansion Methodology of Creative Fashion Design (크리에이티브 패션 디자인의 전개 방법에 관한 연구)

  • Kong Mi-Sun;Chae Keum-Seok
    • Journal of the Korean Society of Costume
    • /
    • v.55 no.2 s.92
    • /
    • pp.45-57
    • /
    • 2005
  • The creative fashion design is the technique which ran be obtained through the structural analysis of the relationship between principle, element-combination and idea-expression. In the research, as the results of theoretical survey of design structure and idea-expression, the structural and subjective designs are classified and defined: a. the structural design is analyzed with the existing examples based on the combinational Idea-expression of the O.C.L method, and b. the subjective design is also analyzed connecting the real examples to Cordon method, Synetic method, Association method, and expansive idea-expression-method obtained by the Experiences of Geometrical Combinations. The research can be summarized as follows: 1. The creative fashion design which emphasizes the geometrical structure utilizes the modification method whirh combines the shapes and constructs extraordinary structural beauty coming from the complex structural principle, that is, emphasis and balance. 2. The creative fashion design which emphasizes specific subjects utilizes the modification method which mimics representative and plastic resemblances and constructs symbolic structural beauty coming from the simple structural principle, that is, material elements.

An Experimental Study of Surface Materials for Planting of Building Surface by the Radiant Heat Balance Analysis in the Summer (하절기 실험을 통한 건물녹화용 피복재료의 복사수지 해석)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.71-80
    • /
    • 2010
  • This study carried out to understand the thermal characteristics of various surface material which compose the city through the observation in the summer. To examine passive cooling effect of planting of building, it is arranged four different materials that is natural grass, grass block, concrete slab and artificial grass. The results of this study are as follows; (1) Natural grass and grass block show the lower surface temperature because of the structures of leaf can do more thermal dissipation effectively. (2) There is little surface temperature between artificial grass and concrete. But there is little high surface temperature difference between natural grass and concrete because of latent heat effect. (3) The concrete can play a role of the tropical nights phenomenon as high heat capacity of concrete compare with other materials. (4) It is nearly same color in artificial grass and natural grass but there is large difference between natural grass and artificial grass at albedo. There is different albedo in near infrared ray range. (5) A short wave radiation gives more effect at the globe temperature than long wave radiation. (6) The artificial turf protected the slab surface temperature increase in spite of thin and low albedo materials.

Generalized fracture toughness for specimens with re-entrant corners: Experiments vs. theoretical predictions

  • Carpinteri, Alberto;Cornetti, Pietro;Pugno, Nicola;Sapora, Alberto;Taylor, David
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.609-620
    • /
    • 2009
  • In this paper the results of a series of experimental tests upon three-point bending specimens made of polystyrene and containing re-entrant corners are firstly described. Tests involved different notch angles, different notch depths and finally different sizes of the samples. All the specimens broke at the defect, as expected because of the material brittleness and, hence, the generalized stress intensity factor was expected to be the governing failure parameter. Recorded failure loads are then compared with the predictions provided by a fracture criterion recently introduced in the framework of Finite Fracture Mechanics: fracture is assumed to propagate by finite steps, whose length is determined by the contemporaneous fulfilment of energy balance and stress requirements. This fracture criterion allows us to achieve the expression of the generalized fracture toughness as a function of the tensile strength, the fracture toughness and the notch opening angle. Comparison between theoretical predictions and experimental data turns out to be more than satisfactory.

Pressure Effect on Ultrafiltration of Used CMP Slurry (한외여과를 이용한 폐 CMP Slurry의 분리에서 압력의 영향)

  • Hong, Seongho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.486-492
    • /
    • 2004
  • CMP (Chemical mechanical polishing) is inevitable process to overcome $0.2{\mu}m$ wire thickness in semiconductor industry. In this study, effect of pressure to separate used CMP slurry into solid and liquid for recycle and reuse by ultrafiltration was investigated. Also, water quality after the ultrafiltration such as turbidity and TDS was evaluated. The material of membrane used in the study was PVDF. The used CMP contained 0.5% of solid content and then concentrated up to 18% by weight. The used CMP can not be concentrated higher than 18% because of viscosity and abrasion of pump. The tested feed pressures were 22.1, 29.4 and 36.8 psi. The results have shown that operating at 36.8 psi has advantages on operation time and total flux. The specific flux showed some variation at 1 to 15 of concentration factor but no difference after 15 of concentration factor. Mass balance of solid at initial stage of the operation showed some unbalance because of deposition of solid on the membrane, which was main reason to reduce flux. Turbidity was very stable at lower than 0.2NTU for 22.1 and 36.8 psi of feed pressure.