• Title/Summary/Keyword: material area

Search Result 4,903, Processing Time 0.032 seconds

The Characteristics of Dispersed Asbestos Fibers Produced From Building Materials (건축재료에서 발생되는 석면입자의 특성 연구)

  • 유성환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.191-199
    • /
    • 1993
  • This paper describes the results of a systematic study to determine the characteristics of particle generated from various types of asbestos containing material(ACM) and manmade fiber material(MMFM) during operations of cutting and grinding in laboratory and workplace. Tests were conducted with a specially designed glove box which allowed complete sampling of the generated asbestos fibers. Specificially, air measurements were made during ACM and MMFM installation in building. All personal air samples collected were identified by polarized light microscopy(PLM), X-ray diffraction(XRD) and scanning electron microscope with energy dispersive X-ray analysis(SEM/EDXA). Also, the samples were counted by phase contrast microscope(PCM) in order to compare the results with the permissible exposure standard for workplace. Results indicate that the characterisitcs of fibers found in the roofing sheet, the ceiling and the wall insulation boards were identical to those of asbestos, while the characteristics of fibers found in the ceiling insulation board, the floor tile and the sprayed on insulation products in parking area were identical to those of asbestos, while the characteristics of fibers found in the ceiling insulation board, the floor tile and the sprayed on insulation products in parking area were identical to those of rock wool. The concentrations of airborne fibers from various building materials cut by a grinder for 5 minutes were in the ranges of 0.09 $\sim$ 1.71 fibers/cc(f/cc). The highest concentration(1.71f/cc) was found during grinding the wall insulation board which also contains rock wool. The airborne fiber concentrations generated by installing at workplace were ranged from 0.0009 to 0.029 f/cc. All asbestos fibers from the ceiling insulation board at workplace were less than 20$\mu$m in length and more than 20% of them had the average aspect ratio greater than 20. Therefore, for the purpose of decreasing asbestos and man-made fiber concentrations at the workplace, the ceiling and wall board should use strong binding material to increase the binding force with fiber. Also, the permissible exposure standard for workplace(2.0f/cc) in Korea should be constituted below the maximum avaiable concentration measured at glove box.

  • PDF

Development of Non-Scallop Block Joint Welding Method (논-스캘럽 블록 조인트 용접법 개발)

  • Kim, Ho-Kyeong;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5419-5424
    • /
    • 2014
  • A weld scallop is a small quadrant or half circle type hole installed in the weld line cross area for easy welding operation. Many types of T-bars with a scallop can be welded in a block assembly stage in shipbuilding. The difficulties arise from the fact that scallops are to be filled by build-up welding after welding of the cross line is complete. In this study, a non-scallop block joint welding method was developed using special type CBM (ceramic backing material). The wedge shaped CBM was devised to insert a CBM into just the V groove of weld line cross area without weld scallop. A saw-toothed shape was adopted for easy cutting of the unnecessary part in the CBM fitting process. The applicability of the developed method was verified through welding experiments based on the yard welding conditions.

Characterization of the Soldering Interface in Power Modules by Peel Strength Measurement (벗김강도 측정법에 의한 파워 모듈의 솔더접합 특성 평가)

  • Kim, Nam-Kyun;Lee, Hee-Heung;Bahng, Wook;Seo, Kil-Soo;Kim, Eun-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1142-1149
    • /
    • 2003
  • The strength and characteristics of the soldering interface of the power semiconductor chip in a power module has been firstly surveyed by the peel strength measurement method. A power module is combined with several power chips which generally has 30∼400$\textrm{mm}^2$ chip area to allow several tens or bigger amps in current rating, so that the traditional methods for interface characterization like shear test could not be applied to high power module. In this study power diode modules were fabricated by using lead-tin solder with 10${\times}$10$\textrm{mm}^2$ or 7${\times}$7$\textrm{mm}^2$ soldering interface. The peel strengths of soldered interfaces were measured and then the microscopic investigation on the fractured surfaces were followed. The peel test indicated that the crack propagated either through the bulk of the soft lead-tin solder which has 55-60 kgf/cm peel strength or along the interface between the solder and the plated nickel layer which has much lower 22 kgf/cm strength. This study showed that the peel test would be a useful method to quantify the solderability as well as to recognize which is the worst interface or the softest material in a power module with a large soldering area.

A study on the micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ Bulk Metallic Glasses using micro-forging and Finite Element Method applications (마이크로 단조를 이용한 Zr 계 벌크 비정질합금의 미세 성형성 평가와 유한요소해석 적용에 관한 연구)

  • Kang Sung-Gyu;Park Kyu-Yeol;Son Seon-Cheon;Lee Jong-Hon;Na Young-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.153-161
    • /
    • 2006
  • Micro-forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Micro-forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, micro- formability of a representative bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$. was investigated for micro-forging of U-shape pattern. Micro-formability was estimated by comparing $R_f$ values ($=A_f/A_g$), where $A_g$ is cross-sectional area of U groove, and $A_f$ the filled area by material. Micro-forging process was simulated and analyzed by applying finite element method. FEM simulation results showed reasonable agreement with the experimental results when the material properties and simulation conditions such as top die speed, remeshing criteria and boundary conditions were tightly controlled. The micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ was increased with increasing load and time in the temperature range of the supercooled liquid state. Also, FEM simulation using a commercial software, DEFORM was confirmed to be applicable for the optimization of micro-forming process.

The Recent Trends of Hanok Design - Based on the Analysis of the Hanoks Appeared in Architecture Magazines in the Last 10 Years - (한옥 설계의 최근 경향 연구 - 최근 10년간 건축전문 잡지에 게재된 신축 한옥을 대상으로 -)

  • Lee, Ju-Ock;Han, Pil-Won
    • Journal of architectural history
    • /
    • v.21 no.1
    • /
    • pp.171-186
    • /
    • 2012
  • The objective of this study is to find out the recent trends of hanok design based on 58 hanoks appeared in architecture magazines in the last 10 years. The cases are analyzed in terms of location, size, building form, spatial organization, material, roof form, and the ceiling form of living room. The consequences of this study is as follows; Most of the recent hanoks are built in rural area (91.4%), which shows the hanok is not accepted as an urban house type. Hanoks tend to be built in 2 stories whose 2nd floor is smaller than the 1st floor. (34.5%) The preferred size is total floor area of $99.2{\sim}165.2m^2$ (62.0%), 3 rooms (46.6%) with a traditional ondol room (60.3%). The buildings with ㄱ-shape (43.1%) and linear-shape (27.6%) are preferred, and the compact plan type similar with apartment house appears (13.8%). In the roof design that greatly influences the appearance of building, the traditional design factors such as half-hipped roof (55.2%), double eaves (27.6%), and eaves curve tend to be sustained. In terms of spatial organization, most of recent hanoks have double-layed plan (74.2%). The living room mostly has separately defined space. (82.8%) The indoor and outdoor tend to be connected by a narrow wooden veranda (39.7%), while some cases don't have any wooden floor space (48.3%). The entrance is adopted as an important spatial element in front part of building (75.9%), and it influences the appearance of building. The living room, the counterpart of the wooden floor hall in traditional hanok, and kitchen tend to be interiorized. In terms of material, the cement roof tile and red clay brick are preferred. Consequently, the walls of recent hanoks have the image of brick structure rather than the wooden frame structure of traditonal hanok.

Introduction of a novel swabbing material of a wiper and establishment of an optimal method for the collection of organic explosive residues

  • Sung, Tae-myung;Lee, Jong Hyup;Cho, Ju-ik
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.319-328
    • /
    • 2017
  • The identification of explosive residues on specimens obtained from an explosion event is a crucial factor for assessing the cause of the explosion. In order to detect the components of explosives, the explosive residues deposited on surfaces are commonly extracted using swabbing materials pre-wetted with an organic solvent. The residues are then analyzed with analytical instruments such as LC/MS and CE/MS. Most conventionally used swabbing media such as cotton swabs or cotton tip swabs seem unsuitable for extracting explosive residues from the surface of a large area of clothes because the swabbing materials tend to be damaged easily, and because only a relatively small amount of explosives is collected. To overcome these problems, we have introduced a novel wiper ($215{\times}210mm$, single layer, Yuhan-Kimberly, Republic of Korea) as a swabbing material to recover representative organic explosives, namely, TNT, RDX, tetryl, HMX, PETN, and NG, from a large area of clothes. Different sides of the wiper, which was folded in half five times, was used to swab the surface of a clothing. We compared this novel wiper with a cotton swab and a cotton tip swab in terms of the recovery efficiency for the aforementioned organic explosives by pre-wetting with methanol, acetone, and acetonitrile, respectively. We identified that this novel wiper collected a significantly higher amount of organic explosive residues than a cotton swab or a cotton tip swab when using methanol as an extracting solvent.

Fabrication of the Nano-Sized Nickel Oxide Powder by Spray Pyrolysis Process

  • Yu, Jae-Keun;NamGoong, Hyun;Kim, Dong-Hee
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.426-432
    • /
    • 2012
  • This study involves using nickel chloride solution as a raw material to produce nano-sized nickel oxide powder with average particle size below 50 nm by the spray pyrolysis reaction. The influence of the inflow speed of raw material solution on the properties of the produced powder is examined. When the inflow speed of the raw material solution is at 2 ml/min., the average particle size of the powder is 15~25 nm and the particle size distribution is relatively uniform. When the inflow speed of the solution increases to 10 ml/min., the average particle size of the powder increases to about 25 nm and the particle size distribution becomes much more uneven. When the inflow speed of the solution increases to 20 ml/min., the average particle size of the powder increases in comparison to the case in which the inflow speed of the solution was 10 ml/min. However, the particle size distribution is very uneven, showing various particle size distributions ranging from 10 nm to 70 nm. When the inflow speed of solution increases to 50 ml/min., the average particle size of the powder decreases in comparison to the case in which the inflow speed was 20 ml/min., and the particle size distribution shows more evenness. As the inflow speed of the solution increases from 2 ml/min. to 20 ml/min., the XRD peak intensities gradually increase, while the specific surface area decreases. When the inflow speed of solution increases to 50 ml/min., the XRD peak intensities rather decrease, while the specific surface area increases.

Histological comparison of different compressive forces on particulate grafts during alveolar ridge preservation: a prospective proof-of-concept study

  • Lee, Sung-Jo;Kang, Dae-Young;Cho, In-Woo;Shin, Hyun-Seung;Shin, Seung-Il;Fischer, Kai R.;Park, Jung-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.3
    • /
    • pp.197-206
    • /
    • 2020
  • Purpose: The aim of this study was to determine the impact of different compressive forces on deproteinized bovine bone mineral (DBBM) particles covered by native bilayer collagen membrane (NBCM) during alveolar ridge preservation (ARP) in the molar area, and to identify any histomorphometric and clinical differences according to the compressive force applied. Methods: Sockets were filled with DBBM after tooth extraction, and different compressive forces (30 N and 5 N, respectively) were applied to the graft material in the test (30 N) and control (5 N) groups. The DBBM in both groups was covered with NBCM in a double-layered fashion. A crossed horizontal mattress suture (hidden X) was then made. A core biopsy was performed using a trephine bur without flap elevation at the implant placement site for histomorphometric evaluations after 4 months. The change of the marginal bone level was measured using radiography. Results: Twelve patients completed the study. The histomorphometric analysis demonstrated that the mean ratios of the areas of new bone, residual graft material, and soft tissue and the implant stability quotient did not differ significantly between the groups (P>0.05). However, the mean size of the residual graft material showed a significant intergroup difference (P<0.05). Conclusions: The application of 2 compressive forces (5 N, 30 N) on particulate DBBM grafts during open-healing ARP in the posterior area led to comparable new bone formation, implant feasibility and peri-implant bone level.

An Exploratory Study on the Ecosystem Service and Benefit Indicators of Natural Seaweed Beds (천연 해조장 생태계 서비스 및 편익지표에 관한 탐색적 연구)

  • Kang, Seok-Kyu
    • The Journal of Fisheries Business Administration
    • /
    • v.47 no.3
    • /
    • pp.53-69
    • /
    • 2016
  • The purpose of this study is to explore the ecosystem service and benefit indicators of natural seaweed beds. Ecosystems of natural seaweed beds provide a wide range of services and benefits to human society including provisioning services, regulating services, supporting services, and cultural services. Indicators for each of the ecosystem services are chosen by marine plants ecologists and as follows. Ecosystem indicators of natural seaweed beds for provisioning services are well-being food(amount of seaweed harvested/amount of fish landed, fish biomass, area of natural seaweed beds, the number of species, contribution to the second production), raw materials(amount of biomass by breed, amount of aquaculture feed), genetic resources(amount of genetic material extracted, amount of genetic material contained by age and habitat), and medicinal resources(amount of medicinal material extracted). Ecosystem indicators of natural seaweed beds for regulating services are air purification(amount of fine dust/NOx or $SO_2$ captured), climate regulation(amount of $CO_2$ sequestered), waste treatment(amount of N, P stored, biochemical degradation capacity COD), and costal erosion prevention(length and change of natural coast line, amount of sediment prevented). Ecosystem indicators of natural seaweed beds for supporting services are lifecycle and maintenance(primary production, contribution to the second production) and gene pool protection(amount of compositional factors in ecosystem, introduced species). Ecosystem indicators of natural seaweed beds for cultural services are recreation and tourism(the number of visits of an area) and information for cognitive development(amount of time spent in education, research and individual learning about ecosystem of natural seaweed beds).

Method of Location Decision far a Transfer Center Distributing a Necessary Resource Item while Considering Characteristics of the Material in Wartime (전시 군수물자의 효율적 분배와 수송을 위한 TC 위치선정 방법론 연구)

  • Jung, Byung-Ho;Kim, Ik-Ki
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.2
    • /
    • pp.1-14
    • /
    • 2009
  • During wartime, the Air Force have to plan where, and how much, and what need to be distributed to surrounding local area from a chosen central bases. Each base, which has surplus more than needed amount of a certain material collected from near area of the base, is expected to distribute such surplus to other bases in shortage of it. By sending such surplus to other bases in shortage of the material, every base may get sufficient amount of all kinds of materials needed for each base during wartime. Because number of items of materials needed in each military bases during wartime are usually quite large and the frequencies of delivery from a place to other place are also pretty large if each item is delivered from a surplus place to other places in shortage, the Head Quarter of Air Force or the Logistics Command will face to difficulty to decide a reasonable delivery plan between bases for efficient and fast allocation of all materials needed to all bases during wartime. Therefore, this study suggests a solving algorithm with an established TC (transfer center: collecting and distributing center for all materials) to solve such a distribution and transportation problem.