• Title/Summary/Keyword: massive MIMO system

Search Result 51, Processing Time 0.022 seconds

Performance Analysis of MRT-Based Dual-Polarized Massive MIMO System with Space-Polarization Division Multiple Access

  • Hong, Jun-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4006-4020
    • /
    • 2018
  • In recent years, one of the most remarkable 5G technologies is massive multiple-input and multiple-output (MIMO) system which increases spectral efficiency by deploying a large number of transmit-antennas (eg. tens or hundreds transmit-antennas) at base station (BS). However, conventional massive MIMO system using single-polarized (SP) transmit-antennas increases the size of the transmit-array proportionally as the number of transmit-antennas increases. Hence, size reduction of large-scale transmit-array is one of the major concerns of massive MIMO system. To reduce the size of the transmit-array at BS, dual-polarized (DP) transmit-antenna can be the solution to halve the size of the transmit-array since one collocated DP transmit-antenna deploys vertical and horizontal transmit-antennas compared to SP transmit-antennas. Moreover, proposed DP massive MIMO system increases the spectral efficiency by not only in the space domain but also in the polarization domain whereas the conventional SP massive MIMO system increases the spectral efficiency by space domain only. In this paper, the comparative performance of DP and SP massive MIMO systems is analyzed by space division multiple access (SDMA) and space-polarization division multiple access (SPDMA) respectively. To analyze the performance of DP and SP massive MIMO systems, DP and SP spatial channel models (SCMs) are proposed which consider depolarized propagation channels between transmitter and receiver. The simulation results show that the performance of proposed 32 transmitter (Tx) DP massive MIMO system improves the spectral efficiency by about 91% for a large number of user equipments (UEs) compare to 32Tx SP massive MIMO system for identical size of the transmit-array.

Adaptive Power Control Using Large Scale Antenna of the Massive MIMO System in the Mobile Communication

  • Ha, Chang-Bin;Jang, Byung-Jun;Song, Hyoung-Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3068-3078
    • /
    • 2015
  • Although the massive MIMO system supports a high throughput, it requires a lot of channel information for channel compensation. For the reduction of overhead, the massive MIMO system generally uses TDD as duplexing scheme. Therefore, the massive MIMO system is sensitive to rapidly changing fast fading in according to time. For the improvement of reduced SINR by fast fading, the adaptive power control is proposed. Unlike the conventional scheme, the proposed scheme considers mobility of device for adaptive power control. The simulation of the proposed scheme is performed with consideration for mobility of device. The result of the simulation shows that the proposed scheme improves SINR. Since SINR is decreased in according to the number of device in the network by unit of cell, each base station can accommodate more devices by the proposed scheme. Also, because the massive MIMO system with high SINR can use high order modulation scheme, it can support higher throughput.

32×32 Full-Rate Massive MIMO Using Quasi-Orthogonal Space-Time Block Code (QOSTBC) (준직교 공간시간 블록부호를 적용한 32×32 전율 대규모 MIMO 시스템)

  • Winn, Khin Zar Chi;Chung, Yeon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.507-513
    • /
    • 2015
  • In this paper, we present the bit-error rate (BER) performance of quasi-orthogonal space-time block code (QOSTBC) massive multiple-input multiple-output (MIMO) system employing up to 32 transmit and receive antennas. The QOSTBC, due to its advantages in transmission rate and decoding complexity, is an important transmit diversity scheme for more than 2 transmit antennas. As massive MIMO implies very large number of antennas, practically at least more than 15 antennas, a different number of transmit and receive antennas (i.e. $2{\times}2$, $4{\times}4$, $8{\times}8$, $16{\times}16$ and $32{\times}32$) using QOSTBC for the massive MIMO system are considered. The BER performance of the massive MIMO with antennas up to $32{\times}32$ using BPSK modulation scheme is analyzed. Simulation results show that the full-rate massive MIMO systems with QOSTBC give a significant performance improvement due to increasing diversity effect, compared with previously considered massive MIMO systems.

Effects of Channel Aging in Massive MIMO Systems

  • Truong, Kien T.;Heath, Robert W. Jr.
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.338-351
    • /
    • 2013
  • Multiple-input multiple-output (MIMO) communication may provide high spectral efficiency through the deployment of a very large number of antenna elements at the base stations. The gains from massive MIMO communication come from the use of multi-user MIMO on the uplink and downlink, but with a large excess of antennas at the base station compared to the number of served users. Initial work on massive MIMO did not fully address several practical issues associated with its deployment. This paper considers the impact of channel aging on the performance of massive MIMO systems. The effects of channel variation are characterized as a function of different system parameters assuming a simple model for the channel time variations at the transmitter. Channel prediction is proposed to overcome channel aging effects. The analytical results on aging show how capacity is lost due to time variation in the channel. Numerical results in a multicell network show that massive MIMO works even with some channel variation and that channel prediction could partially overcome channel aging effects.

Beamforming Based CSI Reference Signal Transmission for FDD Massive MIMO Systems (주파수 분할 방식의 거대 다중 안테나 시스템을 위한 빔형성 기반의 채널상태정보 기준신호 전송기술)

  • Hong, Jun-Ki;Jo, Han-Shin;Mun, Cheol;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.520-530
    • /
    • 2016
  • Since FDD massive MIMO (multiple-input multiple-output) system deploys hundreds of transmit antennas at base station (BS) compared to conventional MIMO system, the overhead of transmitting channel state information reference signal (CSI-RS) increases proportionally to the number of transmit-antennas. To overcome these disadvantages, we proposed beamforming based CSI-RS transmission technique for FDD massive MIMO system which transmit CSI-RS by limited amount of downlink resources.

Combined Hybrid Beamforming and Spatial Multiplexing for Millimeter-Wave Massive MIMO Systems (밀리미터파 Massive MIMO 시스템을 위한 공간 다중화 및 하이브리드 빔 형성)

  • Ju, Sang-Lim;Lee, Byung-Jin;Kim, Nam-Il;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.123-129
    • /
    • 2018
  • Recently, as required wireless communication traffic increase, millimeter wave mobile technologies that can secure broadband spectrum are gaining attention. However, the path loss is high in the millimeter wave channel. Massive MIMO system is being researched in which can complement the path loss by beamforming by equiped large-scale antenna at the base station. While legacy beamforming techniques have analog and digital methods, practical difficulties exist for application to massive MIMO systems in terms of system complexity and cost. Therefore, this paper studies a hybrid beamforming scheme for massive MIMO system in the millimeter wave band. Also this paper considers spatial multiplexing scheme to serve multi-users with multiple received antennas. Gains of the beamforming and the spatial multiplexing schemes are evaluated by analyzing the spectral efficiency.

Antenna Selection Scheme for BD Beamforming-based Multiuser Massive MIMO Communication Systems (BD 빔포밍을 이용한 다중 사용자 기반 거대 안테나 통신 시스템용 안테나 선택 기법)

  • Ban, Tae-Won;Jung, Bang Chul;Park, Yeon-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.433-436
    • /
    • 2013
  • Massive MIMO communication system with huge antennas has been attracting intensive attention as one of key technologies to increase the spectral efficiency. Many previous studies investigated single user Massive MIMO scheme in cellular downlink. Recently, however, intensive researches on multiuser-based Massive MIMO are performed to overcome the problem caused by the limited number of antennas in mobile stations. Although the Massive MIMO scheme based on huge number of antennas inevitably causes hardware and computational complexity in baseband and radio frequency (RF) elements, the problem can be mitigated without serious performance degradation by limiting the number of baseband and RF elements below the number of transmit antennas of base station and opportunistically selecting transmit antennas according to channel states, where the number of selected antennas corresponds to the number of baseband and RF elements in base station. Accordingly, this paper proposes a simple antenna selection scheme for multiuser-based Massive MIMO systems. Our simulation results indicate that the proposed antenna selection scheme can achieve comparable performance to the conventional scheme without antenna selection.

  • PDF

System-Level Performance of Limited Feedback Schemes for Massive MIMO

  • Choi, Yongin;Lee, Jaewon;Rim, Minjoong;Kang, Chung Gu;Nam, Junyoung;Ko, Young-Jo
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.280-290
    • /
    • 2016
  • To implement high-order multiuser multiple input and multiple output (MU-MIMO) for massive MIMO systems, there must be a feedback scheme that can warrant its performance with a limited signaling overhead. The interference-to-noise ratio can be a basis for a novel form of Codebook (CB)-based MU-MIMO feedback scheme. The objective of this paper is to verify such a scheme's performance under a practical system configuration with a 3D channel model in various radio environments. We evaluate the performance of various CB-based feedback schemes with different types of overhead reduction approaches, providing an experimental ground with which to optimize a CB-based MU-MIMO feedback scheme while identifying the design constraints for a massive MIMO system.

Efficient Transmit Antenna Selection Method for Massive MIMO system (Massive MIMO 시스템을 위한 효율적인 송신 안테나 선택 기법)

  • Ju, Sang-Lim;Lee, Byung-Jin;Kim, Young-Jae;Kim, Jin-Up;Bang, Young-Jo;Kim, Kyungseok
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.58-64
    • /
    • 2016
  • This paper proposes the efficient transmit antenna selection (TAS) scheme considering trade-off between the performance and the complexity in massive MIMO system. The massive MIMO system is a core technology to achieve performance objectives for 5 generation wireless communication. It achieve high spectral efficiency, a reliability, and a diversity gain. However many RF chains required by massive transmit antennas equipped in a base station create the problem such as high hardware cost and complexity. Therefor we investigates the transmit antenna selection scheme, in which the number of RF chains of BS is reduced, and the trade-off between the performance and the complexity is considered for proposed scheme. And, the spectral efficiency and complexity are analysed by transmit antenna selection schemes.

Optimization of the Number of Antennas for Energy Efficiency in Massive MIMO WPCN (Massive MIMO WPCN에서 에너지 효율 향상을 위한 안테나 수 최적화 기법)

  • Han, Yonggue;Sim, Dongkyu;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • We introduce an optimization of the number of base station antennas in massive multiple-input multiple-output (MIMO) wireless powered communication network (WPCN). We use channel hardening property of massive MIMO system to approximate channel gain in terms of the number of base station antennas. Then, we find an optimal solution by partial differential and obtain a closed form solution by using Lambert-W function. The simulation results show that the approximation and the method of solving the optimization problem are reasonable, and the optimal solution of proposed scheme is almost identical to the optimal number of base station antennas by the exhaustive search method.