• Title/Summary/Keyword: massif

Search Result 244, Processing Time 0.023 seconds

Geological Structures of the Taean Formation in the Gomseom Area, Southwestern Gyeonggi Massif (경기육괴 남서부 곰섬 일대 태안층의 지질구조)

  • Kim, Inho;Kim, Ae-Ji;Woo, Hayoung;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.159-168
    • /
    • 2019
  • The western Gyeonggi Massif, where records evidence of Phanerozoic subduction/collision tectonics, is an important area to understand the crustal evolutionary history of the Korean Peninsula. This study presents geometric and kinematic characteristics of the geological structures of the Taean Formation in the Gomseom area, southwestern Gyeonggi Massif. We interpreted the geometric relationships between structural elements, and conducted stereographic and down-plunge projections for structural domains. As a result, at least three different deformational events ($D_1$, $D_2$ and $D_3$) are recognized in the study area. In the first deformational event ($D_1$), regional foliations being well defined by the preferred orientation of muscovite and biotite were formed. In the second deformational event ($D_2$), NNE-trending low-angle contractional faults and related crenulation lineations/cleavages were formed. The crenulation lineations shallowly plunge toward SSW~SSE or NNW~NNE. In the third deformational event ($D_3$), SE-plunging folds and NE-trending high-angle faults were formed as 'fault-related fold' and 'fold-accommodation fault', indicating that the $D_3$ folds and faults are genetically linked to each other. This contribution provides important insights into the structural evolution of the Taean Formation along western Gyeonggi Massif, where had evolved as subduction/collisional orogenic belts in the East Asia.

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.

Lattice Preferred Orientation(LPO) and Seismic Anisotropy of Amphibole in Gapyeong Amphibolites (경기육괴 북부 가평 지역에 분포하는 각섬암 내부 각섬석의 격자선호방향(LPO)과 지진파 비등방성)

  • Kim, Junha;Jung, Haemyeong
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.259-272
    • /
    • 2020
  • The seismic properties in the crust are affected by the lattice preferred orientation(LPO) of major minerals in the crust. Therefore, in order to understand the internal structure of the crust using seismic data, information on the LPO of the major constituent minerals and the seismic properties of major rocks in a specific region are needed. However, there is little research on the LPOs of minerals in the crust in Korea. In this study, we collected amphibolites from two outcrops in Wigokri, Gapyeong, located in the nothern portion of Gyeonggi Massif, and we measured the LPOs of major minerals of amphibolite, especially amphibole and plagioclase through EBSD analysis, and calculated seismic properties of amphibolite. Two types of LPOs of amphibole, which are defined as type I and type IV, were observed in the two outcrops of Gapyeong amphibolites, respectively. In the case of amphibolites with the type I LPO of amphibole, large seismic anisotropy of both P- and S-wave was observed, while in the amphibolites with the type IV LPO of amphibole, small seismic anisotropy was observed. This is consistent with previous experimental results. The polarization direction of the fast S-wave was aligned subparallel to the lineation regardless of the LPO types of amphibole. The seismic anisotropy observed in Gapyeong is expected to be helpful to interpret the structure and seismic data within the crust in Gyeonggi Massif.

Metamorphic evolution of granitic and porphyroblastic gneisses in the Seungju-Suncheon area, the southwestern part of the Sobacksan Massif (소백산 육괴 서남부인 승주-순천 일대의 화강암질 편마암과 반상변정질 편마암의 변성진화과정)

  • 오창환;전은영;박배영;안건상;이정후
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.121-141
    • /
    • 2000
  • Granitic and pophyroblastic gneisses are widely distributed in the Seungju-Suncheon area, the southwestern part of the Sobacksan Massif. Two groups of metamorphic P-T conditions are recognized from granitic gneiss. $622-760^{\circ}C/6.2~7.4\;kbar$(Group I) are estimated from garnet cores and samples with weak retrograde metamorphism. $606~785^{\circ}C/3.7~5.4\;kbar$(Group II) are estimated from garnet rims which have lower pyrope and higher spessartine contents due to the effect of retrograde metamorphism. The metamorphic P-T conditions estimated from porphyroblastic gneiss are $489~669^{\circ}C$, 2.1~4.8 kbar which are similar to the P-T conditions of Group II in the granitic gneiss. The whole rock-garnet Sm/Nd isotopic ages determined from granitic and porphyroblastic gneisses are, respectively, $1417{\pm}52\;Ma\;and\;1421{\pm}14\;Ma$. These date indicate that intermediate-P/T type metamorphism represented by Group I may have occurred between the intrusion of granite gneiss and the intrusion of porphyroblastic gneiss(between 1890 Ma~2120 Ma) and two gneisses experienced low-P/T type metamorphism after the intrusion of porphyroblastic gneiss at 1417~1421 Ma.

  • PDF

Metamorphism of gneiss complex in the Paju-Gimpo area, northwestern Gyeonggi massif, Korea (경기육괴 북서부의 파주-김포지역에 분포하는 편마암복합체의 변성작용)

  • Ahn, Kun-Sang;Park, Young-Seog;Kim, Cheong-Bin;Chen, Jiangfeng
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.177-189
    • /
    • 1998
  • Proterozoic gneisss complex of the Paju-Gimpo area, Northwestern Gyeonggi Massif, consists of mainly gneiss and schist with locally intercalated quartzite and metamorphic calcareous rocks. Mineral assemblages of the gneiss and schist are classified into two type: sillimanite free (garnet zone) and sillimanite bearing (sillimanite zone) assemblages. In the Goyang area, Kyanite occurs as metastable relict grain in two gneiss samples, in which sillimanite, garnet, biotite, K-feldspar and plagioclase occur. Cordierite bearing mineral assemblages of gneiss are biotite+garnet+sillimanite+cordierite+plagioclase+quartz ($\pm$K-feldspar, muscovite), and represent the upper amphibolite or granulite facies metamorphism. The metamorphic complex has experienced two different regional metamorphism. The prograde metamorphism is a medium-pressure type characteries by kyanite. The peak metamorphic P-T condition of the prograde metamorphism calculated from the kyanite bearing rock is 7.0~9.4 kb and $718~778^{\circ}C$. The retrograde metamorphism, after the prograde metamorphism, is the low-pressure type characteries by occurrence of cordierite. The peak metamorphic P-T condition of later calculated from the cordierite bearing rock is 3.6~5.5 kb and $750~889^{\circ}C$. Together with the occurrence of relict kyanite, garnet+biotite+plagioclase assemblage as relict in the cordierite, and the result of estimated P-T metamorphic conditions indicate a clockwise P-T path.

  • PDF

Precambrian Crustal Evolution of the Korean Peninsula (한반도 선캠브리아 지각진화사)

  • Lee, Seung-Ryeol;Cho, Kyung-O
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.89-112
    • /
    • 2012
  • The Korean Peninsula consists of three Precambrian blocks: Nangrim, Gyeonggi and Yeongnam massifs. Here we revisited previous stratigraphic relationships, largely based on new geochronologic data, and investigated the crustal evolution history of the Precambrian massifs. The Precambrian strata have been usually divided into lower crystalline basements and upper supracrustal rocks. The former has been considered as Archean or Paleoproterozoic in age, whereas the latter as Paleoproterozoic or later. However, both are revealed as the Paleoproterozoic (2.3-1.8 Ga) strata as a whole, and Archean strata are very limited in the Korean Peninsula. These make the previous stratigraphic system wrong and require reconsideration. The oldest age of the basement rocks can be dated as old as Paleoarchean, suggested by the occurrence of ~3.6 Ga inherited zircon. However, most of crust-forming materials were extracted from mantle around ~2.7 Ga, and produced major portions of crust materials at ~2.5 Ga, which make each massif a discrete continental mass. After that, all the massifs belonged to continental margin orogen during the Paleoproterozoic time, and experienced repeated intracrustal differentiation. After the final cratonization occurring at ~1.9-1.8 Ga, they were stabilized as continental platforms. The Nangrim and Gyeonggi massif included local sedimentary deposition as well as igneous activity during Meso-to Neoproterozoic, but the Yeongnam massif remained stable before the development of Paleozoic basin.

Geochemistry and Sm-Nd isotope systematics of Precambrian granitic gneiss and amphibolite core at the Muju area, middle Yeongnam Massif (영남육괴 중부 무주 지역에 위치하는 선캠브리아기 화강편마암 및 앰피볼라이트 시추코아의 Sm-Nd 연대 및 지구화학적 특징)

  • Lee Seung-Gu;Kim Yongje;Kim Kun-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.127-140
    • /
    • 2005
  • The Samyuri area of Jeoksang-myeon, Muju-gun at the Middle Yeongnam Massif consists of granitic gneiss, porphyroblastic gneiss and leucocratic gneiss, which correspond to Precambrian Wonnam Series. Here we discuss a geochemical implication of the data based on major element composition, trace element, rare earth element (REE), Sm-Nd and Rb-Sr isotope systematics of the boring cores in the granite gneiss area. The boring cores are granitic gneiss (including biotite gneiss) and amphibolite. The major and trace element compositions of granitic gneiss and amphibolite suggest that the protolith belongs to TTG (Tonalite-Trondhjemite-Granodiorite) and tholeiitic series, respectively. Chondrte-normalized REE patterns vary in LREE, HREE and Eu anomalies. The granitic gneiss and amphibolite have Sm-Nd whole rock age of $2,026{\pm}230(2{\sigma})$ Ma with an initial Nd isotopic ratio of $0.50979{\pm}0.00028(2{\sigma})$ (initial ${\epsilon}_{Nd}=-4.4$), which suggests that the source material was derived from old crustal material. Particularly, this initial ${\epsilon}$ Nd value belongs to the range of the geochemical evolution of Archean basement in North-China Craton, and also corresponds to the initial Nd isotope evolution line by Lee et al. (2005). In addition, chondrite-normalized REE pattern and initial Nd value of amphibolite are very similar to those of juvenile magma in crustal formation process.

Nature of contact between the Ogcheon belt and Yeongnam massif and the Pb-Pb age of granitic gneiss in Cheondong-ri, Danyang (단양 천동리 지역 옥천대/영남육괴의접촌관계와 소위 화강암질 편마암의 Pb-Pb 연대)

  • 권성택;이진한;박계헌;전은영
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.144-152
    • /
    • 1995
  • The Jangsan Quartzite of the Joseon Supergroup and the foliated granite (so-called granitlc gneiss of presumed Precambrian age) of the Yeongnam massif are in direct contact at Cheondong-ri area, 6 km @SE of Danyang. sllthough it has been thought traditionally that the Jangsan Quartzite overlies unconformably the f&ted granite, it is difficult to interpret the contact as an unconformity smce the basal conglomerate in- the lower part of the Jangsan Quartzite does not have any clast of the foliated granite, Rather, recent structural studies of this area indlcate that the contact is a ductile shear zone. However, the sense and age of the shear movement are still problematic. Our mesoscopic and microscopic studies of &tre Cheondong-11 semi-brittle shear zone involving foliated cataclasite and phyllonite, which is a pa& of the Ogdong fault, indlcate a top-to-the northeast shearing, i.e., dextral strike slip. We also performed Pb-Pb dating for the age-unknown foliated granite, since the age of deformed granite ccarr emtrain the maximum age of deformation. The whole rock and feldspar Pb isotape data for the foliated granite and a micaceous xenolith define an isoc chron age of $2.16{\pm}0.15$ Ga ($2{\sigma}$;MSWD=4.4) which is interpreted as the emplacement age of the granite. This early Proterozoic age agrees with those of Precambrian igneous activity In the Yeongnam massif reported previously. The obtaiPrfid gge confirms the traditional idea about the age of the foliated granite and indicates that other methd(s) should be employed to constrain the age of the shear movement.

  • PDF

Geological Structure of the Jirisan Metamorphic Complex of the Yeongnam Massif in the Hwagae Area, Korea (화개지역에서 영남육괴 지리산 변성암복합체의 지질구조)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.251-261
    • /
    • 2013
  • Hwagae area, which is situated in the southeastern part of the Jirisan province, Yeongnam massif, Korea, is mainly composed of Precambrian Jirisan metamorphic rock complex (JMRC). Lithofacies distribution of the Precambrian constituent rocks mainly shows NS-trending tight fold and EW-trending open fold. This paper researched deformational phased structural characteristics of JMRC based on the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structure of this area was formed through at least three phases of ductile deformation. (1) Most of structural elements related to the $D_1$ deformation were recognized as $S_{0-1-2}$ composite foliation which was transposed by the $D_2$ deformation. (2) The $D_2$ deformation occurred under the EW-directed tectonic compression, and formed the NS-trending $F_2$ fold and $D_2$ ductile shear zone which is (sub)parallel to the axial plane of $F_2$ fold. (3) The $D_3$ deformation occurred under the NS-directed tectonic compression, and partially reoriented the pre-$D_3$ structural elements into ENE or WNW direction. It indicates that the distribution of Precambrian lithofacies showing NS and EW-trending folds in the Hwagae area is closely associated with the $D_2$ and $D_3$ deformations, respectively.

SHRIMP U-Pb Age of the Early Jurassic Deformed Granites in the Aneui Quadrangle, SW Yeongnam Massif (영남육괴 남서부 안의도폭 지역 초기 쥬라기 변형 화강암류의 SHRIMP U-Pb 연대)

  • Seo, Jaehyeon;Song, Yong-Sun;Park, Kye-Hun
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.147-153
    • /
    • 2016
  • SHRIMP U-Pb age determination was carried out for deformed granites in the Aneui quadrangle, SW Yeongnam Massif. Dating of zircons from a highly deformed mylonitic granite with banded structure and a relatively less deformed porphyritic to augenic granites, that were known as Precambrian gneisses, yielded the same age of ca. 195 Ma. On the basis of this result and previous age data, Early to Middle Mesozoic igneous activity around the Aneui area was interpreted as follows; Subduction-related granitic magmatism started with the intrusion of the Hamyang Granite in the middle Triassic (ca. 225-219 Ma) mainly in the west of the area and ended with syenitic intrusion at the end of Triassic period (ca, 220-210 Ma). After a relatively short period of quiescency, granitic magmatism restarted with the intrusion of magma forming deformed granites dated in this study at the Early Jurassic of ca. 195 Ma and continued to ca. 189 Ma and dioritic intrusion was associated around the late stage of granitic magmatism.