• Title/Summary/Keyword: massif

Search Result 244, Processing Time 0.023 seconds

Analysis of South Korean Crust Deformation Using DGPS Data (DGPS 자료를 이용한 남한지역의 지각변위 분석)

  • Park Jun-Gu;Jo Jin-Dong;Im Sam Seong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.54-62
    • /
    • 2004
  • According to the Korea Tectonic Map, the Korean Peninsula can be divided into seven tectonic units and each of them shows a peculiar deformation pattern. In order to estimate an amount of crustal deformation in the Korean peninsula, we obtained the velocity vector fields of South Korea by dealing with the data set of the years 2001 and 2002, measured from the permanent GPS stations across the country To obtain a relatively precise coordinate of each station, we used GAMIT that is a comprehensive GPS analysis package developed at MIT, Then, a Kalman filter called GLOBK is used to combine the results from GAMIT and to estimate the relative velocity vector for the crustal deformations. The crustal movement of South Korea is turned out to be about 1mm per year westward and about 0.6mm per year southward. In case of Suwon and Seosan(Gyeonggi Massif), the movement occurs slightly to the north-east direction. The movement of a relative velocity field in the tectonic unit is unidirectional, yet the magnitude of the velocity is very small.

  • PDF

A Study on the Original Rock and Trace Elements of the Metamorphic Rocks in Buyeo-Cheongyang, Chungnam (충남(忠南) 부여(扶餘)-청양일대(淸陽一帶)에 분포(分布)하는 변성암류(變成岩類)의 미량성분(微量成分)과 기원암(起源岩)에 관(關)한 연구(硏究))

  • Cho, Kyu-Seong;Nam, Ki-Sang
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.393-398
    • /
    • 1991
  • The Buyeo-Cheongyang area, in the south-western area of Gyeonggi massif, comprises Precambrian and Mesozoic metamorphic and sedimentary rocks. The original rock of metamorphic rocks was studied by geochemical examination and statistical analyses of the trace elements in the gneisses, schists, shale and granitic rocks. Average abundance of Cu,Cr,Pb,Ni,Co,Mn,Li and Zn elements from gneisses have similar to those from shale and schists. However the gneisses have higher Cr,Ni,Co,Mn,Li abundance than those from the granite. Abundance range and frequency distribution of the trace elements in the gneiss show a marked trend sedimentary origin, that is, standard deviation have far the higer than that of igneous origin. Also it is wide dispersion and irregularly distribution. For that reason, this gneiss is regard as sedimentary original rocks with schists.

  • PDF

Geochemical and Sm-Nd Isotopic Study of Amphibolite from the Muju Area, Korea (무주 지역 각섬암의 지구화학 및 Sm-Nd 동위원소 연구)

  • Lee, Kwang-Sik;Cheong, Chang-Sik;Park, Kye-Hun;Chang, Ho-Wan
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.313-320
    • /
    • 1997
  • Geochemical and Sm-Nd isotopic results are reported for amphibolite of the Muju area, Ryeongnam massif. Major and trace element data analyzed indicate that the parental rock of the Muju amphibolite is tholeiitic basalt. The Sm-Nd amphibole-WR-plagioclase data define an isochron corresponding to $1766{\pm}121Ma$ ($1{\sigma}$) (MSWD=1.10) with an initial ratio of $0.51032{\pm}15$. We interpret this age as a metamorphic age of the Muju amphibolite. Tectonic discrimination diagrams clearly fail when they are applied to the Muju amphibolite probably due to compositional variations resulting from crustal contamination and/or degrees of partial melting.

  • PDF

Geochemistry of a Te-bearing Au-Ag mineralization of the Yuryang mine: Fluid inclusion and stable isotope study

  • Heo, Chul-Ho;Choi, Seon-Gyu;Pak, Sang-Joon;Choi, Sang-Hoon;Yun, Seong-Taek
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.178-179
    • /
    • 2003
  • Mesothermal, tellurium-bearing gold-silver vein mineralization of the Yuryang mine was formed in mineralogically complex quartz-sulfide veins that filled the fault fractures in Precambrian gneiss within Gyeonggi Massif. Ore grades average 179 g/ton gold with a gold/silver ratio of 1.5 : 1. Ore mineralization was deposited in single stage. Major ore mineralization can be divided into two mineralization phases with increasing paragenetic time: Fe-sulfide and base-metal mineralization phase $\rightarrow$ telluride mineralization phase. (omitted)

  • PDF

Geological Structures of the Limesilicates in the Songgang-ri, Cheongsong-gun, Korea (청송군 송강리 석회규산염암류의 지질구조)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.139-151
    • /
    • 2018
  • The Songgang-ri area, Cheongsong-gun, which is located in the Sobaeksan province of Yeongnam Massif near the southwestern boundary of Yeongyang subbasin of Gyeongsang Basin, consists of age unknown metamorphic rocks (banded gneiss, granitic gneiss, limesilicates) and age unknown igneous rock (granite gneiss) which intrudes them. This paper researched the geological structures of the Songgang-ri area from the geometric and kinematic features and the developing sequence of multi-deformed rock structures in the geological outcrops exposed about 170 m along the riverside of Yongjeoncheon in the eastern part of Songgang village, Songgang-ri. In the Songgang-ri geological outcrops are recognized three times (Fn, Fn+1, Fn+2) of folding, three times (Dk-I, Dk-II, Dk-III) intrusion of acidic dykes, one time of faulting, which are different in deformation and intrusion timing each other. These geological structures are at least formed by five times (Dn, Dn+1, Dn+2, Dn+3, Dn+4) of deformation. The Dn deformation is recognized by Fn fold which axial surface is parallel to the regional foliation. The Dn+1 intruded the (E)NE trending Dk-I dyke in the earlier phase and formed the NW trending Fn+1 fold in the later phase under compression of (E)NE-(W)SW direction. There are tight, isoclinal, intrafolial folds, boudinage, ${\sigma}$- or ${\delta}$-type boudins, asymmetric fold, C' shear band as the major deformed rock structures. The Dn+2 intruded the (N)NW trending Dk-II dyke in the earlier phase and formed NE trending Fn+2 fold in the later phase under compression of (N)NW-(S)SE direction. There are open fold and folded boudinage as those. The Dn+2 intruded the Dk-III dyke which cuts the Dk-I and Dk-II dykes and the axial surface of Fn+2 fold. The Dn+3 formed the left-handed reverse oblique-slip fault of NNE trend in which hanging wall moves into the SSE direction. Considering in that such five times of deformation recognized in the Songgang-ri geological outcrops are closely connected to the distribution and geological structure of the constituents in the more regional area as well as Songgang-ri area, the research result is expected to play a great data in clarifying and understanding the geological structure and its development process of the surrounding and boundary constituents of the Yeongnam Massif and Gyeongsang Basin.

Paleomagnetic Study of the Proterozoic and Mesozoic Rocks in the Kyeonggi Massif (경기육괴에 분포하는 원생대 및 중생대 암석에 대한 고지자기 연구)

  • 석동우;도성재;김완수
    • Economic and Environmental Geology
    • /
    • v.37 no.4
    • /
    • pp.413-424
    • /
    • 2004
  • A paleomagnetic investigation of the Mesozoic Daedong Supergroup and the Precambrian Seosan Group in the Kyeonggi massif is carried out to elucidate the tectonic evolution of Korea under the effect of the collision between Korea and the North/South China Blocks. For the Daedong Supergroup, the characteristic direction of D/I=74.5$^{\circ}$/36.7$^{\circ}$(k=60.7, $\alpha$=5.1$^{\circ}$) after tilt correction is better clustered than that before tilt correction (D/I=61.9$^{\circ}$/52.8$^{\circ}$, k=4.4,$$\alpha$_{95}$=21.5$^{\circ}$), indi-cating that it is a primary magnetization acquired during the formation of the rock. Paleomagnetic pole position of the formation locates at 208.0$^{\circ}$E, 24.5$^{\circ}$N (n=14, K=67.5, $A_{95}$=4.9$^{\circ}$), statistically similar to those of Middle Triassic period of the SCB, revealing that the two had occupied the same tectonic unit during this period. It is observed that only 6 out of 33 sites of the Seosan Group yield remagnetized paleomagnetic direction. The rest of the sampling sites reveals severe dispersion of magnetic directions presumably due to the consequences of the collision between Korea and the North/South China Blocks. The characteristic direction of the Seosan Group is D/I=45.7$^{\circ}$/60.1$^{\circ}$(k=41.2,$$\alpha$_{95}$=10.6$^{\circ}$) and the corresponding pole is at 195.0$^{\circ}$E, 51.6$^{\circ}$N (n=6, K=20.8, $A_{95}$=12.4$^{\circ}$). Although the pole position is close to those of Jurassic period of the Kyeonggi massif and Early Cretaceous of the Kyeongsang basin. it is interpreted that the Seosan Group was remagnetized by the influence of the emplacement of the Jurassic Daebo Granite after or at the closing stage of the orogenic episode rather than under the direct effect of deformation and/or metamorphism caused by the collision.

Geochemical Characteristics of the Uljin Granitoids in Northeastern Part of the Yeongnam Massif, Korea (영남육괴 북동부 울진지역 화강암류의 지화학적 특성)

  • Wee, SooMeen;Kim, Ji-Young;Lim, Sung-Man
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.313-328
    • /
    • 2013
  • Jurassic granitoids in the northeastern part of the Yeongnam Massif are possibly the result of intensive magmatic activities that occurred in response to subduction of the proto-Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical studies on the granitic rocks are carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the Uljin granitoids in the northeastern part of the Yeongnam Massif indicate that all of the rocks have the characteristics of calcalkaline series in subalkaline field. The overall major element trends show systematic variations in each granitic body, but the source materials of each granitoids seem to have different chemical composition. The Uljin granitoids are different from other granitic rocks, which distributed vicinity of the study area, in the contents of $Al_2O_3$ and trace elements such as Cr, Co, Ni, Sr, Y and Nb. The Uljin granitoids have geochemical features similar to slab-derived adakites such as high $Al_2O_3$, Sr contents and high Sr/Y, La/Yb ratios, but they have low Y and Yb contents. The major ($SiO_2$, $Al_2O_3$, MgO) and trace element (Sr, Y, La, Yb) contents of the Uljin granitoids fall well within the adakitic field. The Uljin granitoids have similar geochemical characteristics, paleotectonic environments and intrusion ages to those of the Yatsuo plutonic rocks of Hida belt located on northwestern part of Japan. Chondrite normalized REE patterns show generally enriched LREEs ($(La/Yb)_{CN}=10.6-103.4$) and are slight negative to flat Eu anomalies. On the ANK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at the continental margin during the subduction of Izanagi plate in Jurassic period.

Applied Petrologic Study of the Daebo Biotite Granites in the mid Gyeonggi Massif (경기육괴 중부에 분포하는 대보 흑운모화강암류의 응용암석학적 연구)

  • Yun, Hyun-Soo;Hong, Sei-Sun;Park, Deok-Won;Lee, Jin-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.263-275
    • /
    • 2012
  • Jurassic Daebo biotite granites, known as one of the main stone resources in the country, are widely and away distributed in the Pocheon and Yangju areas of the mid Gyeonggi massif. The objects of the study are mainly to reveal the unique characteristics of grain size, rock color, mineral composition, physical property and fracture system from the above biotite granites. Biotite granites from the Pocheon area (PG) and Yangju area (YG) are represented by coarse-grained and light gray, and medium to coarse-grained and grayish to light gray, respectively. In modes, main minerals of Qz+Af+Pl (quartz+alkali feldspar+plagioclase) are more increased in the PG, and accessories of biotite are more increased in the YG, which differences can cause the PG more bright light gray than the YG. Specific gravity (SG) shows somewhat more increasing in the YG than the PG. These differences can be caused by more increasing in biotite contents of higher specific gravity compared to the major minerals in the former than the latter. Absorption ratio (AR) and porosity (PR) of the PG and YG show the same values of 0.33 % and 0.86 %, respectively. In the correlations, PR vs SG and AR vs PR show gradually negative and distinctly positive trends, respectively. Compressive strength (CS) and tensile strength (TS) show increasing in the PG (CS: 1,775 $kg/cm^2$, TS: 87 $kg/cm^2$) than the YG (CS: 1,647 $kg/cm^2$, TS: 79 $kg/cm^2$). These strength characteristics could be attributed to the inherent rock textures of them. Abrasive hardness (AH) also shows a little increasing in PG, which can be caused by increase in quartz contents having higher hardness than the other major minerals. Orientations of fracture sets from the PG and YG were compared with those of vertical rift and grain planes in Mesozoic granites of the country. From the overlapped diagram, the distribution pattern between fracture sets and above vertical planes suggests that microcrack systems developed in Mesozoic granites in Korea occur also in the Daebo biotite granite bodies of the mid Gyeonggi massif. From the relation diagram showing the characteristics of fracture patterns for the above two area, PG and YG may have more potentiality for dimension and non-dimension stone resources, respectively.

Deformation history of Precambrian metamorphic rocks of Sobaegsan Massif in Giseong-myeon area, Uljin-gun, Gyeongsangbuk-do, Korea (경상북도 울진군 기성면 지역에서 소백산육괴 선캠브리아기 변성암류의 변형작용사)

  • Kang Ji-Hoon;Kim Nam-Hoon;Song Yong-Sun;Park Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.2 s.44
    • /
    • pp.49-59
    • /
    • 2006
  • This study clarifies the deformation history of Precambrian metamorphic rocks of Sobaegsan Massif (Wonnam Formation, Pyeonghae granite gneiss, Hada leucogranite gneiss) in Giseong-myeon area, Uljin-gun, Korea. It is based on the geometric and kinematic features and the developing sequence of multi-deformed rock structures. It also reviews the extension of Yecheon Shear Zone and the relative occurrence time of each deformation phase from previous researches. It suggests that the geological structure was formed at least through five phases of deformation after formation of their gneissosity or schistosity. (1) The first phase of deformation took placed under compression of ENE-WSW direction, forming NNW trending regional foliation and very tight isoclinal fold. The general trend of gneissosity or schistosity is inferred to be ENE before the first phase of deformation, being rearranged into NNW by the isoclinal folding. (2) The second phase of deformation formed ENE trending regional foliation and tight, isoclinal, rootless intrafolial folds under compression of NNW-SSE direction [occurrence time: after deposition (Permian age) of Dongsugok Formation, Pyeongan Croup, Janggunbong area]. (3) The third phase of deformation occurred by dextral ductile shearing on the regional foliation, forming stretching lineation of ENE trend and S-C mylonitic structure (after intrusion of Hesozoic homblende granite, Sangunmyeon area-before intrusion of Mesozoic Chunyang granite, Janggunbong area). (4) The fourth phase occurred under (E)NE-(W)SW compression, forming (N)NW trending open fold. (5) The fifth phase took place under N-S compression, forming NNE and NNW trending conjugate strike-slip faults, E-W trending thrust-slip faults, and drag folds related to these fault movements. The deformed structures of fourth and fifth phases result from tectonic movement associated with the developing of the Gyeongsang Basin in Cretaceous age, and it partially rearranged the general ENE trend of the regional foliation in the study area. It also suggests that the Yecheon Shear Zone of E-W trending extends into this area but the ductile shear deformation is weakly developed.

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbong area, Korea-Crustal evolution and environmental geology of the central part of the North Sobaegsan massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조-북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • 강지훈;김형식;오세봉
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.224-259
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroupuangsan Quarzite, Dueumri Formation and Janggun Limestone) and Pyeongan Group (Jaesan and Dongsugok Formations)l metasedimentary rocks and Mesozoic granitoid(Chunyang granite). This study is to interpret geological structure of the North Sobaegsan Massif in the Janggunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis(L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(topto-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(%) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientaion is recognized mainly in the Paleozoic metasedimentary rocks.

  • PDF