• Title/Summary/Keyword: mass transfer effect

검색결과 682건 처리시간 0.029초

가열원관군 주위를 유동하는 굴패각의 탈착과정에 대한 열 및 물질전달에 관한 연구 (Study on the Heat and Mass Transfer Characteristics of Oyster Shell Flowing through the Bundle of Heating Pipes)

  • 김명준
    • 동력기계공학회지
    • /
    • 제17권3호
    • /
    • pp.28-34
    • /
    • 2013
  • This study is experimentally performed for using the oyster shell as a desiccant in the fluidized bed with bundle of heating pipe. The test material is oyster shell from fishery wastes which can use without costs. The main parameters of experiment are inlet air temperature, velocity of inlet air and heat flux of heating pipes. Also the geometry of heating pipe is treated as important parameter. From this study, the effect of inlet air temperature and input heat flux have much affect to increase the heat and mass transfer. On the other hand, the effect of inlet air velocity has less affect to increase the heat and mass transfer. And it is clarified that the oyster shell has sufficient probability for using as a desiccant in air-conditioning system.

평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구 (An Experimental Study on Cooling Characteristics of Mist Impinging Jet on a Flat Plate)

  • 전상욱;정원석;이준식
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.511-517
    • /
    • 2003
  • An experiment is conducted to investigate the effect of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. The air mass flow rate ranges from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used fur the purpose of controlling air and water mass flow rates. The test section is designed distinctively from previous works to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases. The water flow rate provides substantial contribution to enhancement of cooling performance. On the other hand, The air mass flow rate weakly influences the averaged heat transfer rate when the water mass flow rate is low, but the averaged heat transfer rate Increases remarkably with the air mass flow rate in case of the high water mass flow rate.

입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (I) - 블레이드 끝단면 - (Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (I) - Blade Tip -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.349-356
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the tip of the rotating turbine blade with various incoming flow incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with a mean tip clearance of 2.5% of the blade chord. The incoming flow Reynolds number is $1.5{\times}10^5$ at design condition. To examine the effect of off-design condition, the experiments with various incidence angles ranging between $-15^{\circ}$ and $+7{\circ}$ were conducted. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. The results indicated that the incidence angle strongly affects the behavior of tip leakage flow around the blade tip and consequently plays an important role in determining heat transfer characteristics on the tip. For negative incidence angles, the heat/mass transfer in the upstream region on the tip decreases by up to 20%. On the contrary, for positive incidence angles, much higher heat transfer coefficients are observed even with small increase of incidence angle.

수평관내 이산화탄소의 증발 열전달 특성 (Evaporative Heat Transfer Characteristics of Carbon Dioxide in a Horizontal Tube)

  • 손창효;이동건;김영률;오후규
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1134-1139
    • /
    • 2004
  • The evaporative heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth, horizontal stainless steel tube of inner diameter of 7.75 mm. The experiments were conducted at mass flux of 200 to 500 kg/m$^2$s, saturation temperature of -5 to 5$^{\circ}C$, and heat flux of 10 to 40kW/m$^2$. The test results showed the heat transfer of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not affect nucleate boiling too much, and the effect of mass flux on evaporative heat transfer of $CO_2$ is much smaller than that of refrigerant R-22 and R-134a. In comparison with test results and existing correlations, correlations failed to predict the evaporative heat transfer coefficient of $CO_2$, therefore, it is necessary to develope reliable and accurate predictions determining the evaporative heat transfer coefficient of $CO_2$ in a horizontal tube.

환형 캐스케이드 내 고정된 터빈 블레이드 및 슈라우드에서의 열/물질전달 특성 (II) - 끝단 필 슈라우드 - (Heat/Mass Transfer Characteristics on Stationary Turbine Blade and Shroud in a Low Speed Annular Cascade (II) - Tip and Shroud -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.495-503
    • /
    • 2005
  • Experiments were conducted in a low speed stationary annular cascade to investigate local heat transfer characteristics on the tip and shroud and the effect of inlet Reynolds number on the tip and shroud heat transfer. Detailed mass transfer coefficients on the blade tip and the shroud were obtained using a naphthalene sublimation technique. The turbine test section has a single stage composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has flat tip geometry and the mean tip clearance is about $2.5{\%}$of the blade chord. The inlet flow Reynolds number based on chord length and incoming flow velocity is changed from $1.0{\times}10^{5}\;to\;2.3{\times}10^{5}.$ to investigate the effect of Reynolds number. Flow reattachment after the recirculation near the pressure side edge dominates the heat transfer on the tip surface. Shroud surface has very intricate heat/mass transfer distributions due to complex flow patterns such as acceleration, relaminarization, transition to turbulent flow and tip leakage vortex. Heat/mass transfer coefficient on the blade tip is about 1.7 times as high as that on the shroud or blade surface. Overall averaged heat/mass transfer coefficients on the tip and shroud are proportional to $Re_{c}^{0.65}\;and\;Re_{c}^{0.71},$ respectively.

마이크로핀관과 평활관에서의 증발열전달과 압력손실 특성 (Evaporation heat transfer and Pressure loss in micro-fin tubes and a smooth tube)

  • 장세환;정시영;홍영기
    • 설비공학논문집
    • /
    • 제11권2호
    • /
    • pp.215-223
    • /
    • 1999
  • Evaporation heat transfer coefficient and pressure loss were measured for three different micro-fin tubes and a smooth tube. The experiments were carried out with R-22 over a wide range of vapor Quality, mass velocity and heat flux. Heat transfer coefficient of the tube with slightly modified fin shape was found to be higher than that of the commercial reference tube by 60%. The improvement of heat transfer has been achieved without noticeable increase of pressure loss. Heat transfer coefficient was increased with increasing quality, refrigerant mass flux, and heat flux. However, the effect of refrigerant mass flux and heat flux was not great. Heat transfer coefficient at bottom was lower than that at top of the tube in low quality region, which suggested the existence of stratification in the micro-fin tube. Pressure drop was linearly increased with increasing refrigerant quality and was proportional to about square of mass flux.

  • PDF

Single Port 하이브리드 로켓의 고체연료 물질전달수(B Number)를 고려한 연소특성 연구 (Influences of B Number Effect on the Burning Rate of Solid Fuel in Single Port Hybrid Rocket)

  • 이정표;김수종;유우준;조성봉;문희장;김진곤
    • 한국항공우주학회지
    • /
    • 제36권3호
    • /
    • pp.264-270
    • /
    • 2008
  • 하이브리드 로켓 고체 연료의 연소율(Burning Rate)을 묘사하는 후퇴율은 연료 유속, 산화제 유속과 더불어 연료길이의 함수로 나타내어지나 일반적으로 가장 영향이 큰 산화제 유속만의 함수로 모델링된다. 그러나 이는 연료가 갖고 있는 고유의 열화학적 특성에 대한 영향이 내포되어 있지 않아 다양한 연료에 대한 공통된 관계를 나타내기 어렵다. 본 연구에서는 고체연료의 열화학적 특성과 연소에 따른 공기역학적 특성이 고려된 물질전달수(B Number)를 도입하여 다양한 연료에 공통으로 사용될 수 있는 연소율 관계식을 제시하고, 물질전달수 내의 공기역학적 특성의 영향을 분석하였다. 물질전달수와 산화제 유속의 함수로 표현된 연소율 식은 고정된 실험 지수항과 상수항으로 PMMA, PP 및 PE의 연소율을 모두 묘사할 수 있었고, 연소율 관계식에서 B Number에 내포된 공기역학적 효과는 미미하였다.

금망임펠러를 이용한 교반조에서의 기-액 물질이동 (Mass Transfer of Gas-Liquid in Agitated Vessel Using Wire Gauge Impeller)

  • 이영세
    • 한국산업융합학회 논문집
    • /
    • 제11권1호
    • /
    • pp.19-26
    • /
    • 2008
  • The gas-liquid mass transfer volumetric coefficients in gas-liquid agitated vessels with wire gauge impellers were measured to be compared with those in vessels with disk turbine and paddle impellers. Also mass transfer volumetric coefficients for disk turbine, paddle impeller and wire gauge impeller in cylindrical agitated vessel was measured over a wide range of Reynolds number from turbulent flow to transition regions. The effect of geometries on $k_La$ is clarified experimentally. Mass transfer volumetric coefficients $k_La$ depends only on the power consumption ($P_{gv}+P_{av}$) per unit volume.

  • PDF

곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 ( I ) - 엇갈린 요철배열 덕트 - (Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region ( I ) - Cross Ribbed Duct -)

  • 김경민;김윤영;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.737-746
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the cross arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of $2\;mm\;(e){\times}\;mm\;(w)$ and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The heat transfer data of the smooth duct for various Ro numbers agree well with not only the McAdams correlation but also the previous studies. The cross-rib turbulators significantly enhance heat/mass transfer in the passage by disturbing the main flow near the surfaces and generating one asymmetric cell of secondary flow skewing along the ribs. Because the secondary flow is induced in the first-pass and turning region, heat/mass transfer discrepancy is observed in the second-pass even for the stationary case. When the passage rotates, heat/mass transfer and flow phenomena change. Especially, the effect of rotation is more dominant than the effect of the ribs at the higher rotation number in the upstream of the second-pass.

입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (II) - 블레이드 표면 - (Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (II) - Blade Surface -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.357-366
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the surface of the rotating turbine blade with various incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with the mean tip clearance of 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. At design condition, the inlet Reynolds number is $Re_c=1.5{\times}10^5$ which results in the blade rotation speed of 255.8 rpm. Also, the effect of off-design condition is examined with various incidence angles between $-15^{\circ}$ and $+7{\circ}$. The results indicated that the incidence angle has significant effects on the blade surface heat transfer. In mid-span region, the laminar separation region on the pressure side is reduced and the laminar flow region on the suction side shrinks with increasing incidence angle. Near the tip, the effect of tip leakage flow increases in span wise and axial directions as the incidence angle decreases because the tip leakage flow is formed near the suction side surface. However, the effect of tip leakage flow is reduced with positive incidence angle.