• 제목/요약/키워드: mass structures

검색결과 2,073건 처리시간 0.03초

접수탱크구조의 진동해석 (Vibration Analysis of a Water Tank Structures)

  • 배성용
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.65-70
    • /
    • 2005
  • A liquid storage rectangular tank structures are used in many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. Many authors have studied vibration of cylindrical and rectangular tanks structures containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the present paper, coupling effect between panels of tank structure on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region have investigated numerically and experimentally.

  • PDF

Optimum tuned mass damper design for preventing brittle fracture of RC buildings

  • Nigdeli, Sinan Melih;Bekdas, Gebrail
    • Smart Structures and Systems
    • /
    • 제12권2호
    • /
    • pp.137-155
    • /
    • 2013
  • Brittle fracture of structures excited by earthquakes can be prevented by adding a tuned mass damper (TMD). This TMD must be optimum and suitable to the physical conditions of the structure. Compressive strength of concrete is an important factor for brittle fracture. The application of a TMD to structures with low compressive strength of concrete may not be possible if the weight of the TMD is too much. A heavy TMD is dangerous for these structures because of insufficient axial force capacity of structure. For the preventing brittle fracture, the damping ratio of the TMD must be sufficient to reduce maximum shear forces below the values proposed in design regulations. Using the formulas for frequency and damping ratio related to a preselected mass, this objective can be only achieved by increasing the mass of the TMD. By using a metaheuristic method, the optimum parameters can be searched in a specific limit. In this study, Harmony Search (HS) is employed to find optimum TMD parameters for preventing brittle fracture by reducing shear force in additional to other time and frequency responses. The proposed method is feasible for the retrofit of weak structures with insufficient compressive strength of concrete.

등가 모델을 이용한 대공간 구조물의 동적 거동 특성에 관한 연구 (A Study on the Characteristics of dynamic Behaviors for the Spatial Structures using Equivalent Lumped Mass Model)

  • 한상을;이상주;김민식;이정현
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.3-10
    • /
    • 2004
  • The earthquake-resistant structural systems have to ensure the sufficient stiffness and ductility for the stability. For those purposes, recently, the performance design concept to increase the degree of absorbed energy level of structures has been proposed. One practical way of the performance design in the spatial structures is to apply the isolation system to boundary parts of roof system and sub-structure to obtain the target performance. So, it is necessary to examine the characteristics of dynamic behavior of spatial structures governed by higher modes rather than lower modes different from the cases of high rise buildings. The objectives of this paper are to develop the equivalent lumped mass model to simplify the analytical processes and to investigate the dynamic behavior of roof system according to the mass and the stiffness of sub-structures as a fundamental study of performance design for the spatial structures.

  • PDF

Mass Spectrometry in the Determination of Glycosylation Site and N-Glycan Structures of Human Placental Alkaline Phosphatase

  • Solakyildirim, Kemal;Li, Lingyun;Linhardt, Robert J.
    • Mass Spectrometry Letters
    • /
    • 제9권3호
    • /
    • pp.67-72
    • /
    • 2018
  • Alkaline phosphatase (AP) is a membrane-bound glycoprotein that is widely distributed in the plasma membrane of cells of various organs and also found in many organisms from bacteria to humans. The complete amino acid sequence and three-dimensional structure of human placental alkaline phosphatase have been reported. Based on the literature data, AP consists of two presumptive glycosylation sites, at Asn-144 and Asn-271. However, it only contains a single occupied N-linked glycosylation site and no occupied O-linked glycosylation sites. Hydrophilic interaction chromatography (HILIC) has been primarily employed for the characterization of the glycan structures derived from glycoproteins. N-glycan structures from human placental alkaline phosphatase (PLAP) were investigated using HILIC-Orbitrap MS, and subsequent data processing and glycan assignment software. 16 structures including 10 sialylated N-glycans were identified from PLAP.

Optimality criteria based seismic design of multiple tuned-mass-dampers for the control of 3D irregular buildings

  • Daniel, Yael;Lavan, Oren
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.77-100
    • /
    • 2015
  • Multiple tuned mass dampers (MTMDs) tuned to various frequencies have been shown to efficiently control the seismic response of structures where multiple modes are dominant. One example is irregular structures that are found more vulnerable than their symmetric counterparts. With the technology of MTMDs available, design and optimal design methodologies are required for application. Such a methodology, in the form of an analysis/redesign (A/R) scheme, has been previously presented by the authors while limiting responses of interest to allowable values, i.e., performance-based design (PBD). In this paper, the A/R procedure is modified based on formal optimality criteria, making it more cost efficient, as well as more computationally efficient. It is shown that by using the methodology presented herein, a desired performance level is successfully targeted by adding near-optimal amounts of mass at various locations and tuning the TMDs to dampen several of the structure's frequencies. This is done using analysis tools only.

중간 면진층을 가지는 래티스 돔 구조물의 병렬 다질점계 등가모델을 이용한 동적 거동 특성에 관한 연구 (A Study on the Characteristics of Dynamic Behaviors for the Spatial Structures using Equivalent Lumped Mass Model)

  • 한상을;이상주;김민식
    • 한국전산구조공학회논문집
    • /
    • 제19권2호
    • /
    • pp.187-194
    • /
    • 2006
  • 일반적으로 구조물이 지진하중에 저항하기 위해서는 충분한 강성과 연성을 확보하여야 한다. 본 연구에서는 대공간 구조시스템의 지붕 구조와 하부 구조 사이에 면진 장치를 도입하는 방법을 사용하여 동적 거동 특성을 규명한다. 하부 구조의 강성과 질량의 크기에 대한 영향을 고려한 대공간 구조 시스템의 동적 거동 특성 규명 및 해석 과정 단순화를 위해 병렬 다질점계 등가모델을 도입한 본 논문은 향후 대공간 구조물의 성능 설계를 위한 기초적인 연구가 될 것이다.

외부구속을 받는 매스콘크리트 구조물의 수화열 해석 (Numerical Analysis of Temperature and Stress Distribution in Mass Concrete Structure with External Restriction)

  • 김은겸;조선규;신치범;박영진;서동기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.345-348
    • /
    • 1999
  • Since the cement-water reaction is exothermic by nature, the temperature rise within a large concrete mass. Significant tensile stresses may develop from the volumn change associated with the increase and decrease of the temperature with the mass concrete. These thermal stresses will cause temperature-related cracking in mass concrete structures. These typical type of mass concrete include mat foundation, bridge piers, thich walls, box type walls, tunnel linings, etc. Crack control methods can be considered at such stages as designing, selecting the materials, and detailing the construction method. In this paper, the effect of placing of crack control joint or construction joint was analysed by a three dimensional finite element method. As a result, using this method, crack control can be easily performed for structures such as wall-type structures.

  • PDF

집중 질량-스프링 모델을 이용한 볼트 결합부 모델링 (Dynamic Modeling of Bolt Joints Using Lumped Mass-Spring Model)

  • 고강호;이장무
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.495-501
    • /
    • 2001
  • In this paper, a new technique which models the joints characteristics through reduction of DOFs of structures with joints using component mode synthesis (CMS) method is proposed. Bolt joints are modeled by mass-spring systems. Also generalized mass and stiffness matrices for this models are introduced. Because bolt joints have influence on eigenvalues of structures, exact eigenvalues from modal test are used. The results show that the behaviors of structures with bolt joints depend to a large extent on the translational DOFs and not on rotational DOFs of mass and stiffness matrices of bolts. Furthermore it is confirmed that lumped mass-spring systems as models of bolt joints are effective models considering the facts that joint characteristics converged to constant values in some iterations and eignevalues from proposed method are in good agreement with ones from modal test.

Crack identification in Timoshenko beam under moving mass using RELM

  • Kourehli, Seyed Sina;Ghadimi, Siamak;Ghadimi, Reza
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.279-288
    • /
    • 2018
  • In this paper, a new method has been proposed to detect crack in beam structures under moving mass using regularized extreme learning machine. For this purpose, frequencies of beam under moving mass used as input to train machine. This data is acquired by the analysis of cracked structure applying the finite element method (FEM). Also, a validation study used for verification of the FEM. To evaluate performance of the presented method, a fixed simply supported beam and two span continuous beam are considered containing single or multi cracks. The obtained results indicated that this method can provide a reliable tool to accurately identify cracks in beam structures under moving mass.

액화질소를 이용한 매스 콘크리트 구조물의 수화열 제어 (The Control of Hydration Heat by Using Liquefied Nitrogen in Mass Concrete Structures)

  • 양인환;어준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1151-1156
    • /
    • 2000
  • Temperature rise and restraint condition in mass concrete structures may induce the cracks at early ages. The method to prevent the cracks induced by heat of hydration has become the major concern in mass concrete structure. Therefore, the purpose of this study is to propose a method to control heat of hydration in mass concrete structures by using cryogenic liquefied nitrogen. The method in this study was applied to actual mass concrete structure to prevent the occurrence of thermal cracks at early ages. The surface observation of structure during more than one month shows that there are seldom cracks. This represent that the method in the study is effective in the control of heat of hydration.

  • PDF