Mass Spectrometry in the Determination of Glycosylation Site and N-Glycan Structures of Human Placental Alkaline Phosphatase

  • Solakyildirim, Kemal (Department of Chemistry, Faculty of Arts and Science, Erzincan University) ;
  • Li, Lingyun (Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute) ;
  • Linhardt, Robert J. (Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute)
  • Received : 2018.04.04
  • Accepted : 2018.05.30
  • Published : 2018.09.30


Alkaline phosphatase (AP) is a membrane-bound glycoprotein that is widely distributed in the plasma membrane of cells of various organs and also found in many organisms from bacteria to humans. The complete amino acid sequence and three-dimensional structure of human placental alkaline phosphatase have been reported. Based on the literature data, AP consists of two presumptive glycosylation sites, at Asn-144 and Asn-271. However, it only contains a single occupied N-linked glycosylation site and no occupied O-linked glycosylation sites. Hydrophilic interaction chromatography (HILIC) has been primarily employed for the characterization of the glycan structures derived from glycoproteins. N-glycan structures from human placental alkaline phosphatase (PLAP) were investigated using HILIC-Orbitrap MS, and subsequent data processing and glycan assignment software. 16 structures including 10 sialylated N-glycans were identified from PLAP.


Supported by : US National Institute of Health


  1. Endo, T.; Ohbayashi, H.; Hayashi, Y.; Ikehara, Y.; Kochibe, N.; Kobata, A. J. Biochem. 2010, 103, 182.
  2. Millan, J. L. Purinergic Signal. 2006, 2, 335.
  3. Le Du, M. H.; Stigbrand, T.; Taussig, M. J.; Menez, A.; Stura, E. A. J. Biol. Chem. 2001, 276, 9158.
  4. Zhang, F.; Murhammer, D. W.; Linhardt, R. J. Appl. Biochem. Biotechnol. 2002, 101, 197.
  5. Nam, J. H.; Zhang, F.; Ermonval, M.; Linhardt, R. J.; Sharfstein, S. T. Biotechnol. Bioeng. 2008, 100, 1178.
  6. Chen, Y. H.; Chang, T. C.; Chang, G. G. Protein Expr. Purif. 2004, 36, 90.
  7. Suzuki, A.; Lymp, J.; Donlinger, J.; Mendes, F.; Angulo, P.; Lindor, K. Clin. Gastroenterol. Hepatol. 2007, 5, 259.
  8. Regidor, D. L.; Kovesdy, C. P.; Mehrotra, R.; Rambod, M.; Jing, J.; McAllister, C. J.; Wyck, D. V.; Kopple, J. D.; Kalantar-Zadeh, K. J. Am. Soc. Nephrol.?2008, 19, 2193.
  9. Dziedziejko, V.; Safranow, K.; Slowik-Zylka, D.; Machoy-Mokrzynska, A.; Millo, B.; Machoy, Z.; Chlubek, D. Biochime 2009, 91, 445.
  10. Oliveira-Ferrer, L.; Legler, K.; Milde-Langosch, K. Semin. Cancer Biol. 2017, 44, 141.
  11. Haltiwanger, R. S.; Feizi, T. Curr. Opin. Struct. Biol. 2011, 21, 573.
  12. Szabo, Z.; Guttman, A.; Karger, B. L. Anal. Chem. 2010, 82, 2588.
  13. North, S. J.; Hitchen, P. G.; Haslam, S. M.; Dell, A. Curr. Opin. Struct. Biol. 2009, 19, 498.
  14. Kim, Y. -G.; Gil, G.; Jang, K.; Lee, S.; Kim, H.; Kim, J.; Chung, J.; Park, C.; Harvey, D. J.; Kim, B. J. Mass Spectrom. 2009, 44, 1087.
  15. Gil, G. -C.; Iliff, B.; Cerny, R.; Velander, W. H.; Van Cott, K. E. Anal. Chem. 2010, 82, 6613.
  16. Mechref, Y.; Muzikar, J.; Novotny, M. V. Electrophoresis 2005, 26, 2034.
  17. Nwosu, C. C.; Aldredge, D. L.; Lee, H.; Lerno, L. A.; Zivkovic, A. M.; German, J. B.; Lebrilla, C. B. J. Proteome Res. 2012, 11, 2912.
  18. Melmer, M.; Stangler, T.; Schiefermeier, M.; Brunner, W.; Toll, H.; Rupprecther, A.; Linder, W.; Premstaller, A. Anal. Bioanal. Chem. 2010, 398, 905.
  19. Ruhaak, L. R.; Huhn, C.; Waterreus. W.; De Boer, A. R.; Neususs, C.; Hokke, C. H.; Deelder, A. M.; Wuhrer, M. Anal. Chem. 2008, 80, 6119.
  20. Buszewski, B.; Noga, S. Anal. Bioanal. Chem. 2012, 402, 231.
  21. Shevchenko, A.; Tomas, H.; Havlis, J.; Olsen, J. V.; Mann, M. Nat. Protoc. 2006, 1, 2856.
  22. Morelle, W.; Michalski, J. -C. Nat. Protoc. 2007, 2, 1585.
  23. Tarentino, A. L.; Gomez, C. M.; Plummer, T. H. Biochemistry 1985, 24, 4665.
  24. Harris, H. Clin. Chim. Acta 1990, 186, 133.
  25. Desaire, H. Mol. Cell. Proteomics 2013, 12, 893.