• Title/Summary/Keyword: mass productivity

Search Result 393, Processing Time 0.025 seconds

The Ecosystem of the Southern Coastal Water of the East Sea, Korea II. Primary Productivity in and around Cold Water Mass

  • Han, Myung-Soo;Jang, Dong-Hyuk;Yang, Han-Soeb
    • Journal of the korean society of oceanography
    • /
    • v.33 no.4
    • /
    • pp.196-204
    • /
    • 1998
  • $^{14}$C uptake experiments were carried out in and around the cold water mass in the southern part of the Korean East Sea in August and October 1995 to assess spatial and seasonal variability of primary productivity and its relation to physical and chemical factors. The cold and high saline water mass in the bottom layer extended upward to the surface layer and developed along the eastern coast of Korea in August. Chlorophyll-a concentration was maintained high in the cold water mass through August to October and its maximum concentration was 6.3 ${\mu}$g 1$^{-1}$ at Stn. 209-4 in August. Primary productivity and daily primary productivity ranged from 0.29 to 8.02 mgC m$^{-3}$ hr$^{-1}$ and from 58.3 to 63.1 mgC m$^{-2}$ d$^{-1}$, respectively, throughout the study period. Primary productivity of the cold water mass was higher than that of offshore waters in both summer and autumn seasons. P$_{max}$ and I$_{max}$ of the cold water mass in August were higher than those in October, except Stn. 208-5. These results suggest that high primary productivity in the cold water mass may be established by the upwelled nutrients and light adaptaion to convected phytoplankton due to upwelling of the bottom waters.

  • PDF

A study on the mass production performance evaluation of servomotors for manufacturing robots (제조 로봇용 서보모터의 양산성능 평가 연구)

  • Ryu, K.H.;Lee, T.H.;Park, J.W.;Kwon, H.S.;Kang, B.S.
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.91-96
    • /
    • 2022
  • The performance and reliability of foreign servomotors and domestic servomotors for manufacturing robots were compared and verified. The mass productivity was confirmed by satisfying the requirements of the demanding companies. The servomotor was designed in consideration of mass productivity while satisfying the requirements of the demanding company. It was mounted on a real robot to check its performance and reliability. To secure mass-production performance, we designed and manufactured easy-to-manufacture parts and jigs to manufacture servomotors and achieved the goal of the mass-production evaluation of servomotors through individual performance evaluation, robot mounting test evaluation, and supplementation.

A Comparison of Methods for Estimating the Productivity of Zostera marina

  • Park, Sang-Rul;Li, Wen-Tao;Kim, Seung-Hyeon;Kim, Jae-Woo;Lee, Kun-Seop
    • Journal of Ecology and Environment
    • /
    • v.33 no.1
    • /
    • pp.59-65
    • /
    • 2010
  • Because seagrass production significantly contributes to the biodiversity and production of coastal and estuarine ecosystems, accurate estimation of seagrass productivity is a critical step toward understanding the ecological roles of seagrass in these ecosystems. To develop an accurate and effective method of measuring seagrass productivity, we estimated leaf productivity of eelgrass (Zostera marina) on the southern coast of Korea using three methods, the conventional leaf marking method, the elongation-mass method (Short '87 method), and the plastochrone method. In each season, shoots were pierced through the bundle sheath using a hypodermic needle and were collected after 2-4 weeks had elapsed to estimate their productivity. The leaf elongation and the leaf plastochrone intervals varied significantly among seasons. On an annual basis, the conventional leaf marking method showed the lowest leaf productivity estimates compared to the elongation-mass method and the plastochrone method, suggesting that the conventional leaf marking method underestimated leaf productivity as it ignored leaf maturation processes and new leaf growth within the sheath. Since the elongation-mass method considered leaf maturation processes, this method produced higher leaf productivity estimates than the conventional leaf marking method. On an annual basis, the plastochrone method produced the highest leaf productivity estimates. Below-ground productivity, which can be easily estimated using the plastochrone method, ranged between 3.29 and 5.73 (mg dry weight $shoot^{-1}\;day^{-1}$) and accounted for about 17.8% to 30.3% of total productivity. Because of the high contributions of below-ground productivity to total seagrass production, we suggest that the plastochrone method is an effective and simple technique for assessing both above- and below-ground productivities.

The ecosystem modelling for enhancement of primary productivity in Kamak Bay (가모만에서의 기초생산력 향상방안에 관한 생태계모델링)

  • Lee, Dae-In;Jo, Eun-Il;Park, Cheong-Gil
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.575-586
    • /
    • 1999
  • From the environmental aspects, primary productivity of phytoplankton plays the most improtant role in enhancement of marine culture oyster production. This study may be divided into two branches; one is estimation of maximum oyster meat production per unit facility(Carrying Capacity) under the present enviromental conditions in Kamak Bay, the other is improvement of carrying from increase of primary productivity by changing the environmental conditions that cause not ot form an unfavorable environment such as the formation of oxygen deficient water mass using the eco-hydrodynamic model. By simulation of three-dimensional hydrdynamic model and ecosystem model, the comparison between observed and computed data showed good agreement. The results of sensitivity analysis showed that phytoplankton maximum growth rate was the most important parameter for phytoplankton and dissolved oxygen. The estimation of mean primary productivity of Wonpo, Kamak, Pyongsa, and Kunnae culture grounds in Kamak Bay during culturing period were 3.73gC/$m^2$/d, 2.12gC/$m^2$/d, 1.98gC/$m^2$/d, and 1.26gC/$m^2$/d, respectively. Under condition not ot form the oxygen deficient water mass, four times increasing of pollutants loading as much as the present loading from river increased mean primary productivity of whole culture grounds to 4.02gC/$m^2$/d. Sediment N, P fluxes that allowed for 35% increasing from the present conditions increased mean primary productivity of whole culture grounds to 3.65gC/$m^2$/d. Finally, ten times increasing of boundary loadings from the present conditions increased mean primary productivity of whole culture grounds to 3.95gC/$m^2$/d. The maximum oyster meat production per year and that of unit facility in actual oyster culture grounds under the present conditions were 6,929ton and 0.93ton, respectively. This 0.93ton/unit facility is considered to be the carrying capacity in study area, and if the primary productivity is increased by changing the environmental conditions, oyster production can be increased.

  • PDF

Effects of light condition in the continuous mass cultivation of microalgae Scenedesmus dimorphus (미세조류 Scenedesmus dimorphus 연속 대량배양 운전에 있어 광 조건이 성장에 미치는 영향)

  • Joo, Sung-jin;Hwang, Hyeon-jeong;Zhang, Shan;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.319-323
    • /
    • 2015
  • This study investigated the effects of the light conditions on the productivity of scenedesmus dimorphus in the continuous mass cultivation system. To compare the algal productivity according to the light conditions, S. dimorphus was cultivated continuously under the wide range of light intensity(200-600 PPFD) and various light wavelength(white light and red-blue mixed light). After 100 days of cultivation under the different light intensity, the productivity of S. dimorphus increased as light intensity decreased. So, the productivity was maximized as 100 mg/L/d when light intensity was 200 PPFD. In case of light wavelength, the productivity of S. dimorphus was enhanced about 20% with the white light compared to that of the red-blue mixed light. Consequently, the optimal light conditions for the continuous mass cultivation of S. dimorphus were 200 PPFD as light intensity and white light as light wavelength.

Development of Bioreactors for Hydrogen-Producing Immobilized Photosynthetic Bacteria(I) : Evaluation of lmmobilized CSTR for Hydrogen Productivity and Effectiveness Factor (광합성 박테리아를 이용한 고성능 수소 생산 고정화 생물반응기의 개발(I) 고정화 연속 교반탱크 반응기에서의 수소 생산성 및 효율인자 평가)

  • 선용호;한정우
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.243-255
    • /
    • 1993
  • In this study, it was observed that hydrogen Productivity varied with stirrer speed, bead radius, input glucose concentration and dilution rate in a continuous stirred tank reactor in which immobilized R. rubrum KS-301 was used as a hydrogen-producing bacterium The mass transfer resistance due to cell immobilization was also studied. In order to estimate an effectiveness factor, Des of glucose was first obtained, which was subsequently represented by the correlation equation between Dos and Xb, As a result external mass transfer resistance could be neglected for stirrer speeds greater than 400rpn With bead radius increasing, the hydrogen productivity and internal effectiveness factor decreased. With input 91ucose concentration increasing, the hydrogen productivity and interval and external effectiveness factor increased. Although an Internal effectiveness factor was not affected, hydrogen productivity Increased with dilution rate increasing. An overall effectiveness factor remained nearly constant for the dilution rates investigate4 but increased with input 91ucose concentration increasing.

  • PDF

Candida magnoliae SR101에 의한 Erythritol의 생산에서 산업용 질소원의 선정 및 최척화

  • Park, Seon-Yeong;Seo, Jin-Ho;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.351-354
    • /
    • 2001
  • In this experiment, we tested various nitrogen sources and then culture condition was optimized for industrial applications. The batch culture of Candida magnoliae SR101 grown in a defined medium supplemented with light steep water (LSW) as a sole nitrogen source showed a relatively high yield of erythritol production (53%), which was slightly higher than that using yeast extract as a nitrogen source, while the productivity and cell mass were maintained at similar levels. For the optimization of culture condition, the batch culture was performed. When the concentration of LSW was 65 mL/L in the defined medium containing 250 g/L of glucose, the concentration, yield and productivity of erythritol were 110 g/L, 44%, and 0.66 g/L-hr, respectively. The high yield and comparable productivity obtained with a cheap nitrogen source could be expected as a basis for the mass production of erythritol in the industrial scale.

  • PDF

High Cell Density Cultivation of Pseudomonas oleovorans for the Production of Poly(3-Hydroxyalkanoates)

  • Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.51-53
    • /
    • 1996
  • Fed-batch culture of Pseudomonas oleovorans was carried out for the production of medium-chain-length polyhydroxyalkanoates (MCL-PHAs) using octanoate as a carbon source. Octanoate and the salt solution containing ammounium sulfate and magnesium sulfate were intermittently fed in the course of fermentation. Cell mass and PHA concentrations of 42.8 and 16.8g/L, respectively, could be obtained in 40 h. The PHA content and the PHA productivity were 39.2% and 0.42 g PHA/L-h, respectively. The yields of cell mass and PHA were 0.71 g dry cell mass/g octanoate and 0.28g PHA/g octanoate, respectively. Therefore, octanoate can be used for the production of MCL-PHAs to a high concentration with high productivity.

  • PDF

Quantitative Physiology of T. reesei

  • Ryu, Deway;Ryu, W.S.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.115.2-115
    • /
    • 1979
  • By employing a two-stage continuous culture system, some of important physiological parameters involved in cellulase bicsynthesis have been evalua-ted with an ultimate objective of detigning an op-timally controlled tellulase process. Volumetric and specific cellulase productivities obtained were 90 IU/liter/hr and 8IU/g biomass/hr respectively. The maximum specific enzyme productivity observed was 14.8 IU/g hiomass/hr. The optimal dilution rate in the second stage which corresponded to the maximum enzyme productivity was 0.026-0.028 hr$^{-1}$ , and the specific growth rate in the second stage ihat suported maximum specific enzyme productivity was equal to orslightly less than zero. The maintenance coefficients deter-mined for oxygen and for carbon source are M$_{o}$=0.85mmmole/g biomass/hr and M$_{c}$=0.14 mmole hexose/g bio mass/hr respectively. The yield constants determined are; Y(x/o) =32.3g biomass/mole oxygen, Y (x/c) =1.1g bio-mass/g carbon or 0.44g biomass/g hexose, Y(x/n) = 19.6g biomass/g nitrogen for the enzyme produc-tion stage and 12.5g biomass/g nitrogen for the cell growth stage.e.e.

  • PDF

Alcohol Productivity Using Starchy Raw Material in Pilot Scale Multi-stage CSTR (Pilot Scale Multi-stage CSTR에서 전분질 원료를 이용한 알콜 생산)

  • Nam, Ki-Du;Lee, In-Ki;Cho, Hoon-Ho;Kim, Woon-Sik;Suh, Kuen-Hack;Ryu, Beung-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.80-84
    • /
    • 1994
  • In order to induce the rapid alcohol fermentation through the increases of the cell density in a continuous alcohol fermentation of naked barley, the single-cultivation with S. cerevisiae IS-019(SCM, ordinary control), mixed-cultivation with Saccharomyces uvarum IS-026 having a flocculent ability and S. cerevisiae IS-019(MCM), and mash recirculation by single-cultivation of S. cerevisiae IS-019(MRM) modes were investigated. The cell mass in the mixed-cultivation mode was about 10% higher than that of ordinary control but the final alcohol yield was slightlyl decreased. When recycled the mash with the flow rate of 7 l/h from V$_{6}$ to V$_{5}$ fermentors under the ordinary control, the cell density was distributed at 140~170$\times $10$^{6}$ cell/ml depending upon the fermentorsorders, higher about 20% than that of the ordinary control. Under these conditions the alcohol productivity of the maximum and the overall was 12.16 g/l$\cdot $h with an alcohol of 7.6% at the V$_{5}$ fermentor and 1.19 g/l$\cdot $h with an alcohol of 8.94%, respectively. For higher cell mass it was more effective to apply the mash recirculation mode with the single-cultivation of S. cerevisiae IS-019 in a pilot scale multi-stage CSTR.

  • PDF