• Title/Summary/Keyword: mass optimization

Search Result 711, Processing Time 0.03 seconds

Suspension Culture-Mediated Tetraploid Formation in Mouse Embryonic Stem Cells

  • Lee, Jae-Hee;Gong, Seung-Pyo;Lim, Jeong-Mook;Lee, Seung-Tae
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • Suspension culture is a useful tool for culturing embryonic stem (ES) cells in large-scale, but the stability of pluripotency and karyotype has to be maintained $in$ $vitro$ for clinical application. Therefore, we investigated whether the chromosomal abnormality of ES cells was induced in suspension culture or not. The ES cells were cultured in suspension as a form of aggregate with or without mouse embryonic fibroblasts (MEFs), and 0 or 1,000 U/ml leukemia inhibitory factor (LIF) was treated to suspended ES cells. After culturing ES cells in suspension, their karyotype, DNA content, and properties of pluripotency and differentiation were evaluated. As a result, the formation of tetraploid ES cell population was significantly increased in suspension culture in which ES cells were co-cultured with both MEFs and LIF. Tetraploid ES cell population was also generated when ES cells were cultured alone in suspension regardless of the existence of LIF. On the other hand, the formation of tetraploid ES cell population was not detected in LIF-free condition, in which MEFs were included. The origin of tetraploid ES cell population was turned out to be E14 ES cells and not MEFs by microsatellite analysis and the basic properties of them were still maintained despite ploidy-conversion to tetraploidy. Furthermore, we identified the ploidy shift from tetraploidy to near-triploidy as tetraploid ES cells were differentiated spontaneously. From these results, we demonstrated that suspension culture system could induce ploidy-conversion generating tetraploid ES cell population. Moreover, optimization of suspension culture system may make possible mass-production of ES cells.

Synthesis of Single Crystal Diamond by Variation of Deposition Pressure by HFCVD (HFCVD에 의한 증착압력 변화에 따른 Single Crystal Diamond 합성)

  • Kim, Min Su;Bae, Mun Ki;Kim, Seong-Woo;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.20-24
    • /
    • 2020
  • Single crystal diamonds are in great demand in such fields as mechanical, electronic applications and optoelectronics. Large area single crystal diamonds are attracting attention in future industries for mass production and low cost. In this study, hot filament CVD (HFCVD) is used to grow large area single crystal diamond. However, the growth rate of large area single crystal diamond using HFCVD is known to be very low. The goal of this study is to use single crystal diamond substrates in HFCVD with methane-hydrogen gas mixtures to increase the growth rate of single crystal diamond and to optimize the conditions by analysing the effects of deposition conditions for high quality crystallinity. The deposition pressure, the ratio of CH4/H2 gas, the substrate temperature and the distance between the filament and the substrate were optimized. The sample used a 4×4 (mm2) size single crystal diamond substrate (100), the CH4/H2 gas ratio was fixed at 5%, the substrate temperature was synthesized to about 1000℃. At this time, the deposition pressure was changed to three types of 50, 75, 85 Torr and deposited. Finally, optimization was investigated under pressure conditions to analyse the growth rate and quality of single crystal diamond.

Optimization of \beta-mammanase Production from Bacillus subtilis JS-1. (\beta-Mannanase를 생산하는 Bacillus subtilis JS-1의 분리 및 효소 생산성)

  • 임지수;정진우;이종수;강대경;강하근
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • A bacteria strain producing extracellular $\beta$-mannanase was isolated from soil and was identified as Bacillus subtilis by 16S rRNA sequence comparison and biochemical determinations. The optimum pH and temperature for the $\beta$-mannanase activity were 5.0 and 5.5$^{\circ}C$, respectively. The zymogram technique revealed a single protein band exhibiting $\beta$-mannanase activity from the culture supernatant. The molecular mass of the enzyme was estimated at approximately 130 kDa. The addition of 0.5% lactose or 0.5% locust bean gum to the LB medium caused to Increase significantly the $\beta$-mannanase productivity from Bacillus subtilis JS-1. The cells grown on LB medium supplemented with lactose produced maximal enzyme activity at the stationary phase. In contrast to this, the $\beta$-mannanase was induced at the logarithmic phase from the cells grown on LB medium supplemented with locust bean gum. The discrepancy in induction times suggests that $\beta$-mannanase was induced by different induction mechanisms depending on the carbon sources in Bacillus subtilis JS-1 .

Cloning, Characterization of Pichia etchellsii $\beta-Glucosidase$ II and Effect of Media Composition and Feeding Strategy on its Production in a Bioreactor

  • Sethi Benu;Jain Monika;Chowdhary Manish;Soni Yogesh;Bhatia Yukti;Sahai Vikram;Mishra Saroj
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.43-51
    • /
    • 2002
  • The cloning and expression of $\beta-glucosidase$ II, encoded by the gene ${\beta}glu2$, from thermotolerant yeast Pichia etchellsii into Escherichia coli is described. Cloning of the 7.3 kb BamHI/SalI yeast insert containing ${\beta}glu2$ in pUC18, which allowed for reverse orientation of the insert, resulted in better enzyme expression. Transformation of this plasmid into E. coli JM109 resulted in accumulation of the enzyme in periplasmic space. At $50^{\circ}C$, the highest hydrolytic activity of 1686 IU/g protein was obtained on sophorose. Batch and fed-batch techniques were employed for enzyme production in a 14 L bioreactor. Exponential feeding rates were determined from mass balance equations and these were employed to control specific growth rate and in turn maximize cell growth and enzyme production. Media optimization coupled with this strategy resulted in increased enzyme units of 1.2 kU/L at a stabilized growth rate of $0.14\;h^{-l}$. Increased enzyme production in bioreactor was accompanied by formation of inclusion bodies.

Polymer Microlens Fabrication (폴리머 마이크로렌즈 제작)

  • Ryoo, Kunkul;Kim, Younggeun;Jeon, Kwangseok
    • Clean Technology
    • /
    • v.11 no.4
    • /
    • pp.205-211
    • /
    • 2005
  • There have been many technologies and materials proposed for realizing microlens array, and plastic injection is recognized as the most promising one because of several merits such as optical properties, impact resistance, formability, lightening and environmental adaptability. Since PR reflow for injection template fabrication enables the lens shape control easier, and the sample technology more effective for mass production, it lowers the cost, enhances integration, and reduces process steps, which leads to be environmentally benign. However injection of polymers may face the difficulty of formability depending on their properties. In order to overcome the difficulty, fast heating/cooling technology was introduced in this study, and microlenses were fabricated and evaluated. template obtained by PR reflow method was heated and cooled fast during injection to fabricate microlens array. PC and PMMA polymer materials were compared, and it was realized that PMMA showed much better formability due to its lower melting temperature. Injection parameters of pressures and velocities were driven out for injection optimization.

  • PDF

Application of Separation Technology and Supercritical Fluids Process (초임계유체 공정과 분리기술의 응용)

  • Yoon, Soon-Do;Byun, Hun-Soo
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.123-143
    • /
    • 2012
  • Supercritical fluid technology (SFT) is recently one of the most new techniques, which has been interested various fields of related chemical industries. SFT is the most effective and practical technology with eco-friendly, energy-savings, and high efficiency as the technique using the advantages of supercritical fluid such as high solvation power, solubility, mass transfer rate, and diffusion rate. Especially, it is necessary to analyze, evaluate, and develop the potential of application techniques using SFT with these characterizations. Therefore in this review, the phase behavior in supercritical fluid at high temperature and pressure of monomers/polymers for the optimization of polymerization process are briefly described, and the preparation of molecularly imprinted polymers (MIPs) in supercritical fluid using supercritical polymerization and the performance evaluation of MIPs are introduced.

Carbon-free Hydrogen Production Using Membrane Reactors (막촉매반응기를 이용한 수소생산)

  • Do, Si-Hyun;Roh, Ji Soo;Park, Ho Bum
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.297-306
    • /
    • 2018
  • This review focused carbon-free hydrogen productions from ammonia decomposition including inorganic membranes, catalysts and the presently studied reactor configurations. It also contains general information about hydrogen productions from hydrocarbons as hydrogen carriers. A Pd-based membrane (e.g. a porous ceramic or porous metallic support with a thin selective layer of Pd alloy) shows its efficiency to produce the high purity hydrogen. Ru-based catalysts consisted of Ru, support, and promoter are the efficient catalysts for ammonia decomposition. Packed bed membrane reactor (PBMR), Fluidized bed membrane reactor (FBMR), and membrane micro-reactor have been studied mainly for the optimization and the improvement of mass transfer limitation. Various types of reactors, which contain various combinations of hydrogen-selective membranes (i.e. Pd-based membranes) and catalysts (i.e. Ru-based catalysts) including catalytic membrane reactor, have been studied for carbon-free hydrogen production to achieve high ammonia conversion and high hydrogen flux and purity.

STATION-KEEPING MANEUVERS FOR A GEOSTATIONARY SATELLITE USING LINEAR QUADRATIC REGULATOR (선형제차조절법을 이용한 정지궤도 위성의 위치보존 궤도조정)

  • 이선익;최규홍;이상욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.142-149
    • /
    • 1997
  • This paper applied one of the well-known optimal control theory, namely, linear quadratic regulator(LQR), to the station-keeping maneuvers(SKM) for a geostationary satellite. The boundary conditions to transfer the system with a good accuracy at a terminal time were based upon the predicted orbital data which are created due to the Earth's non-uniform mass distribution's effect during 14 days and due to luni-solar effect during 28 days. Through the linearization of the nonlinear system equation with respect to reference orbit and the numerical integration of Riccati equation, the optimal trajectories and the corresponding control law have been obtained by using LQR. From the comparison of ${\Delta}V$ obtained by LQR with the ${\Delta}V$ obtained anatically by geometric method, Station Keeping Maneuvers(SKM) via LQR may provide comparable results to a real system. Furthermore it will demonstrate the possibility in fuel optimization and life extension of geostationary satellite.

  • PDF

Enhancement of Hyaluronic Acid Production by Batch Culture of Streptococcus zooepidemicus via the addition of n-Dodecane as an Oxygen Vector

  • Liu, Long;Yang, Haiquan;Zhang, Dongxu;Du, Guocheng;Chen, Jian;Wang, Miao;Sun, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.596-603
    • /
    • 2009
  • This study aimed to examine the influence of adding an oxygen vector, n-dodecane, on hyaluronic acid (HA) production by batch culture of Streptococcus zooepidemicus. Owing to the high viscosity of culture broth, microbial HA production during 8-16 h was limited by the oxygen transfer coefficient $K_La$, which could be enhanced by adding n-dodecane. With the addition of n-dodecane to the culture medium to a final concentration of 5% (v/v), the average value of $K_La$ during 8-16 h was increased to $36{\pm}2h^{-1}$, which was 3.6 times that of the control without n-dodecane addition. With the increased $K_La$ and dissolved oxygen (DO) by adding 5% (v/v) of n-dodecane, a 30% increase of HA production was observed compared with the control. Furthermore, the comparison of the oxygen mass transfer in the absence and presence of n-dodecane was conducted with two proposed mathematical models. The use of n-dodecane as an oxygen vector, as described in this paper, provides an efficient alternative for the optimization of other aerobic biopolymer productions, where $K_La$ is usually a limiting factor.

Higher Biomass Productivity of Microalgae in an Attached Growth System, Using Wastewater

  • Lee, Seung-Hoon;Oh, Hee-Mock;Jo, Beom-Ho;Lee, Sang-A;Shin, Sang-Yoon;Kim, Hee-Sik;Lee, Sang-Hyup;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1566-1573
    • /
    • 2014
  • Although most algae cultivation systems are operated in suspended culture, an attached growth system can offer several advantages over suspended systems. Algal cultivation becomes light-limited as the microalgal concentration increases in the suspended system; on the other hand, sunlight penetrates deeper and stronger in attached systems owing to the more transparent water. Such higher availability of sunlight makes it possible to operate a raceway pond deeper than usual, resulting in a higher areal productivity. The attached system achieved 2.8-times higher biomass productivity and total lipid productivity of $9.1g\;m^{-2}day^{-1}$ and $1.9g\;m^{-2}day^{-1}$, respectively, than the suspended system. Biomass productivity can be further increased by optimization of the culture conditions. Moreover, algal biomass harvesting and dewatering were made simpler and cheaper in attached systems, because mesh-type substrates with attached microalgae were easily removed from the culture and the remaining treated wastewater could be discharged directly. When the algal biomass was dewatered using natural sunlight, the palmitic acid (C16:0) content increased by 16% compared with the freeze-drying method. There was no great difference in other fatty acid composition. Therefore, the attached system for algal cultivation is a promising cultivation system for mass biodiesel production.