DOI QR코드

DOI QR Code

Carbon-free Hydrogen Production Using Membrane Reactors

막촉매반응기를 이용한 수소생산

  • Do, Si-Hyun (Department of Energy Engineering, Hanyang University) ;
  • Roh, Ji Soo (Department of Energy Engineering, Hanyang University) ;
  • Park, Ho Bum (Department of Energy Engineering, Hanyang University)
  • 도시현 (한양대학교 에너지공학과) ;
  • 노지수 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2018.10.23
  • Accepted : 2018.10.28
  • Published : 2018.10.31

Abstract

This review focused carbon-free hydrogen productions from ammonia decomposition including inorganic membranes, catalysts and the presently studied reactor configurations. It also contains general information about hydrogen productions from hydrocarbons as hydrogen carriers. A Pd-based membrane (e.g. a porous ceramic or porous metallic support with a thin selective layer of Pd alloy) shows its efficiency to produce the high purity hydrogen. Ru-based catalysts consisted of Ru, support, and promoter are the efficient catalysts for ammonia decomposition. Packed bed membrane reactor (PBMR), Fluidized bed membrane reactor (FBMR), and membrane micro-reactor have been studied mainly for the optimization and the improvement of mass transfer limitation. Various types of reactors, which contain various combinations of hydrogen-selective membranes (i.e. Pd-based membranes) and catalysts (i.e. Ru-based catalysts) including catalytic membrane reactor, have been studied for carbon-free hydrogen production to achieve high ammonia conversion and high hydrogen flux and purity.

본 총설은 분리막기술이 적용된 수소생산에 대한 개론으로, 특히, 암모니아를 수소운반체로 이용하는 수소생산에 대한 연구결과를 중점적으로 서술하였다. 암모니아를 수소운반체로 적용한 수소생산은 추가적인 탄소생성이 없다는 점 외에 여러 측면에 있어 이점이 있다. 많은 연구들이 고순도 수소 분리 및 생산을 위한 분리막 개발을 위해 진행되고 있으며, 이들 중 팔라듐을 기본으로 한 분리막(예를 들어, 다공성 세라믹 또는 다공성 금속 지지체와 팔라듐 합금의 얇은 선택층으로 이루어진 분리막)에 대한 연구가 활발하다. 반면에, 효율적인 암모니아 분해를 위해서는 주로 루테늄 촉매가 적용되고 있으며, 루테늄과 지지체 및 촉진제로 이루어진 루테늄에 기반을 둔 촉매에 대한 연구발표가 다수 존재한다. 수소생산을 위한 분리막 반응기 형태로는 충전층, 유동층, 그리고 마이크로반응기 등이 있으며, 이들의 최적화 및 원활한 물질전달 연구는 현재진행형이다. 또한, 높은 암모니아 분해율, 고순도 수소생산 및 높은 수소생산율을 얻기 위해 분리막과 촉매의 다양한 조합에 대한 연구 및 분리막과 촉매의 역할을 동시에 구현할 수 있는 분리막에 대한 연구가 발표되고 있다.

Keywords

References

  1. S. Adhikari and S. Fernando, "Hydrogen membrane separation techniques", Ind. Eng. Chem. Res., 45, 875 (2006). https://doi.org/10.1021/ie050644l
  2. J. D. Holladay, J. Hu, D. L. King, and Y. Wang, "An overview of hydrogen production technologies", Catal. Today, 139, 244 (2009). https://doi.org/10.1016/j.cattod.2008.08.039
  3. H. Yin and A. C. K. Yip, "A review on the production and purification of biomass-derived hydrogen using emerging membrane technologies", Catalysts, 7, 297 (2017). https://doi.org/10.3390/catal7100297
  4. F. Gallucci, E. Fernandez, P. Corengia, and M. V. S. Annaland, "Recent advances on membranes and membrane reactors for hydrogen production", Chem. Eng. Sci., 92, 40 (2013). https://doi.org/10.1016/j.ces.2013.01.008
  5. M. R. Rahimpour, F. Samimi, A. Babapoor, T. Tohidian, and S. Mohebi, "Palladium membranes applications in reaction systems for hydrogen separation and purification: A review", Chem. Eng. Process. Process Intensif., 121, 24 (2017). https://doi.org/10.1016/j.cep.2017.07.021
  6. G. Barbieri, A. Brunetti, G. Gricoli, and E. Drioli, "An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen", J. Power Source, 182, 160 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.086
  7. F. Gallucci, L. Paturzo, and A. Basile, "A simulation study of the steam reforming of methane in a dense tubular membrane reactor", Int. J. Hydrog. Energy, 29, 611 (2004). https://doi.org/10.1016/j.ijhydene.2003.08.003
  8. A. A. Plazaola, D. A. P. Tanaka, M. V. S. Annaland, and F. Gallucci, "Recent advances in Pd-Based membranes for membrane reactors", Molecules, 22, 51 (2017). https://doi.org/10.3390/molecules22010051
  9. S. L. Jorgensen, P. E. H. Nielsen, and P. Lehrmann, "Steam reforming of methane in a membrane reactor", Catal. Today, 25, 303 (1995). https://doi.org/10.1016/0920-5861(95)00074-P
  10. O. M Lovvik, T. A. Peters, and R. Bredesen, "First-principles calculations on sulfur interacting with ternary Pd-Ag-transition metal alloy membrane alloys", J. Membr. Sci., 453, 525 (2014). https://doi.org/10.1016/j.memsci.2013.11.035
  11. A. Iulianelli, P. Ribeirinha, A. Mendes, and A. Basile, "A methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review", Renew. Sustain. Energy Rev., 29, 355 (2014). https://doi.org/10.1016/j.rser.2013.08.032
  12. N. Bion and D. Duprez, "Bioethanol reforming for $H_2$ production. A comparison with hydrocarbon reforming", Phys. Rep., 302, 1 (2015).
  13. F. Schuth, R. Palkovits, R. Schlogl, and D. S. Su, "Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition", Energy Environ. Sci., 5, 6278 (2012). https://doi.org/10.1039/C2EE02865D
  14. S. Chiuta, R. C. Everson, H. W. J. P. Neomagus, P. V. D. Gryp, and D. G. Bessarabov, "Reactor technology options for distributed hydrogen generation via ammonia decomposition: A review", Int. J. Hydrogen Energ., 38, 14968 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.067
  15. K. Nagaoka, T. Eboshi, Y. Takeishi, R. Tasaki, K. Honda, K. Imanura, and K. Sato, "Carbon-free $H_2$ production form ammonia triggered at room temperature with an acidic $RuO_2/{\gamma}-Al_2O_3$ catalyst", Sci. Adv., 3, e1602747 (2017). https://doi.org/10.1126/sciadv.1602747
  16. T. Hejze, J. O. Besenhard, K. Kordesch, M. Cifrain, and R. R. Aronsson, "Current status of combined systems using alkaline fuel cells and ammonia as a hydrogen carrier", J. Power Sources, 176, 490 (2008). https://doi.org/10.1016/j.jpowsour.2007.08.117
  17. D. A. P. Tanaka, M. A. T. Llosa, T. Nagase, J. Okazaki, Y. Wakui, F. Mizukami, and T. M. Suzuki, "Fabrication of hydrogen-permeable composite membranes packed with palladium nanoparticles", Adv. Mater., 18, 630 (2006). https://doi.org/10.1002/adma.200501900
  18. N. A. Khan, A. Uhl, S. Shaikjutdinov, and H.-J. Freund, "Alumina supported model Pd-Ag catalysts: A combined STM, XPS, TPD and IRAS study", Surf. Sci., 600, 1849 (2006). https://doi.org/10.1016/j.susc.2006.02.016
  19. L. Zhao, A. Goldbach, and H. Xu, "Tailoring palladium alloy membranes for hydrogen separation from sulfur contaminated gas streams", J. Membr. Sci., 507, 55 (2016). https://doi.org/10.1016/j.memsci.2016.01.055
  20. Y. Liab, F. Lianga, H. Buxa, We. Yangb, and J. Caro, "Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation", J. Mem. Sci., 354, 1-2, 48 (2010). https://doi.org/10.1016/j.memsci.2010.02.074
  21. A. Huang and J. Caro, "Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity", Angew. Chem. Int. Ed, 50, 4979 (2011). https://doi.org/10.1002/anie.201007861
  22. Y. Yoshinoa, T. Suzukia, B. N. Naira, H. Taguchia, and N. Itoh, "Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature", J. Membr. Sci., 267, 1-2, 8 (2005). https://doi.org/10.1016/j.memsci.2005.05.020
  23. M. Kanezashi and M. Asaeda, "Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature", J. Membr. Sci., 271, 1-2, 86 (2006). https://doi.org/10.1016/j.memsci.2005.07.011
  24. S. Yolcular, "Hydrogen recovery from methylcyclohexane as a chemical hydrogen carrier using a palladium membrane reactor", Energy Sources, Part A: recovery, Util. Environ. Eff. 38, 2148 (2016). https://doi.org/10.1080/15567036.2015.1030476
  25. J. Tong, L. Su, Y. Kashima, R. Shirai, H. Suda, and Y. Matsumura, "Simultaneously depositing Pd-Ag thin membrane on asymmetric porous stainless steel tube and application to produce hydrogen from steam reforming of methane", Ind. Eng. Chem. Res., 45, 648 (2006). https://doi.org/10.1021/ie050935u
  26. F. Roa and J. D. Way, "Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladium-copper membranes", Ind. Eng. Chem. Res., 42, 5827 (2003). https://doi.org/10.1021/ie030426x
  27. C. Su, T. Jin, K. Kuraoka, Y. Matsumura, and T. Yazawa, "Thin palladium film supportedon $SiO_2$-modified porous stainless steel for a high-hydrogen-flux membrane", Ind. Eng. Chem. Res., 44, 3053 (2005). https://doi.org/10.1021/ie049349b
  28. S. Liguori, A. Iulianelli, F. Dalena, P. Pinacci, F. Drago, M. Broglia, Y. Huang, and A. Basile, "Performance and long-term stability of Pd/PSS and $Pd/Al_2O_3$ mem-branes for hydrogen separation", Membranes, 4, 143 (2014). https://doi.org/10.3390/membranes4010143
  29. O. Altinisik, M. Dogan, and G. Dogu, "Preparation and characterization of palladium-plated porous glass for hydrogen enrichment", Catal. Today, 105, 641 (2005). https://doi.org/10.1016/j.cattod.2005.06.012
  30. S. F. Yin, B. Q. Xu, X. P. Zhou, and C. T. Au, "A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications", Appl. Catal. A, 277, 1 (2004). https://doi.org/10.1016/j.apcata.2004.09.020
  31. H. S. Zeng, K. Inazu, and K. Aika, "Dechlorination process of active carbon-supported, barium nitrate-promoted ruthenium trichloride catalyst for ammonia synthesis", Appl. Catal. A: Gen., 219, 235 (2001). https://doi.org/10.1016/S0926-860X(01)00696-2
  32. T. V. Choudhary, C. Svadinaragana, and D. W. Goodman, "Catalytic ammonia decomposition: $CO_x$-free hydrogen production for fuel cell applications", Catal. Lett., 72, 197 (2001). https://doi.org/10.1023/A:1009023825549
  33. W. Arabczyk and J. Zamlynny, "Study of the ammonia decomposition over iron catalysts", Catal. Lett., 60, 167 (1999). https://doi.org/10.1023/A:1019007024041
  34. F. Gallucci, M. D. Falco, S. Tosti, L. Marrelli, and A. Basile, "Co-current and counter-current configurations for ethanol steam reforming in a dense Pd-Ag membrane reactor", Int. J. Hydrogen Energ., 33, 6165 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.026
  35. R. E. Buxbaum, "Hydrogen generator", Patent US 6,461,408 (2002).
  36. F. Gallucci, M. V. Sintannaland, and J. A. M. Kuipers, "Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming", Int. J. Hydrogen Energ., 35, 7142 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.050
  37. A. L. Mejdell, M. Jondahl, T. A. Peters, R. Bredesen, and H. J. Venvik, "Experimental investigation of a microchannel membrane configuration with a 1.4 ${\mu}m$ Pd/Ag 23 wt% membrane-Effects of flow and pressure", J. Membr. Sci., 327, 6 (2009). https://doi.org/10.1016/j.memsci.2008.11.028
  38. J. Zhang, H. Xu, and W. Li, "High-purity $CO_x$-free $H_2$ generation from $NH_3$ via the ultra permeable and highly selective Pd membranes", J. Membr. Sci., 277, 85 (2006). https://doi.org/10.1016/j.memsci.2005.10.014
  39. F. R. Garcia-Garcia, Y. H. Ma, I. Rodriguez-Ramos, and A. Guerrero-Ruiz, "High purity hydrogen production by low temperature catalytic ammonia decomposition in a multifunctional membrane reactor", Catal. Commun., 9, 482 (2008). https://doi.org/10.1016/j.catcom.2007.07.036
  40. G. Li, M. Kanezashi, and T. Tsuru, "Highly enhanced ammonia decomposition in a bimodal catalytic membrane reactor for $CO_x$-free hydrogen production", Catal. Commun., 15, 60 (2011). https://doi.org/10.1016/j.catcom.2011.08.011
  41. E. Rizzuto, P. Palange, and Z. D. Prete, "Characterization of an ammonia decomposition process by means of a multifunctional catalytic membrane reactor", Int. J. Hydrogen Energ., 39, 11403 (2014). https://doi.org/10.1016/j.ijhydene.2014.05.161
  42. M. E. E. Abashar, "Ultra-clean hydrogen production by ammonia decomposition", J. King Saud Univ. - Eng. Sci., 30, 2 (2018).