• Title/Summary/Keyword: mass optimization

Search Result 711, Processing Time 0.048 seconds

Optimum Design Condition of the Collins Cryocooler (Collins 내동기의 최적 설계조건)

  • Lee, S.W.;Kim, S.Y.;Jung, P.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.3
    • /
    • pp.183-190
    • /
    • 1992
  • The Collins cryocooler is numerically analysed with the optimization technique, and the optimum operating and design conditions are searched. This paper shows that liquefied helium quantity has an external maximum w.r.t. the total mass flow rate, the mass flow rates through expander and the capacities of heat exchangers. The liquefied helium quantity increases as the compressor exit pressure of the cryocooler does. The maximum quantity of liquefied helium and the maximum coefficient of performance have been found to exist in extremum, depending on the ratios of each heat exchanger capicities to the total one. At the optimum condition, the capacity of heat exchanger in high temperature region is larger than that in low temperature region.

  • PDF

Border Guard/Reconnaissance Communication Terminal for Providing Variable Frame Structure and Method for Altering the Frame Structure (가변 프레임 구조를 지원하는 국경 감시/정찰용 통신 단말 및 프레임 구조 가변 방법)

  • Kim, Janghun;Han, Chulhee;Seo, Bongyong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2016
  • This paper is about the implementation of the OFDM-based border guard/reconnaissance communication terminal systems. We have implemented Real-time Dynamic DL/UL symbol rate control function using the DL-MAP message, and proposed error detection method caused by malfunctioning and timing optimization method. The proposed scheme detects the variable rate symbol decoding timing without increasing additional physical layer logic, and also provides a wide variety of DL/UL data transfer rate. Furthermore, the proposed scheme applies to the current border guard/reconnaissance equipment and confirms a operation performance through field tests and demonstration at home and abroad.

Optimization of the Profiles in MeV Implanted Silicon Through the Modification of Electronic Stopping Power

  • Jung, Won-Chae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.94-100
    • /
    • 2013
  • The elements B, P and As can each be implanted in silicon; for the fabrication of integrated semiconductor devices and the wells in CMOS (complementary metal oxide semiconductor). The implanted range due to different implanted species calculated using TRIM (Transport of Ions in Matter) simulation results was considered. The profiles of implanted samples could be measured using SIMS (secondary ion mass spectrometry). In the comparison between the measured and simulated data, some deviations were shown in the profiles of MeV implanted silicon. The Moliere, C-Kr, and ZBL potentials were used for the range calculations, and the results showed almost no change in the MeV energy region. However, the calculations showed remarkably improved results through the modification of the electronic stopping power. The results also matched very well with SIMS data. The calculated tolerances of $R_p$ and ${\Delta}R_p$ between the modified $S_e$ of TRIM and SIMS data were remarkably better than the tolerances between the TRIM and SIMS data.

Optimization of Hip Flexion/Extension Torque of Exoskeleton During Human Gait Using Human Musculoskeletal Simulation (인체 근골격 시뮬레이션을 활용한 인체 보행 시 외골격의 고관절 굴곡/신장 토크 최적화)

  • Hyeseon Kang;Jinhyun Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.117-121
    • /
    • 2023
  • Research on walking assistance exoskeletons that provide optimized torque to individuals has been conducted steadily, and these studies aim to help users feel stable when walking and get help that suits their intentions. Because exoskeleton auxiliary efficiency evaluation is based on metabolic cost savings, experiments on real people are needed to evaluate continuously evolving control algorithms. However, experiments with real people always require risks and high costs. Therefore, in this study, we intend to actively utilize human musculoskeletal simulation. First, to improve the accuracy of musculoskeletal models, we propose a body segment mass distribution algorithm using body composition analysis data that reflects body characteristics. Secondly, the efficiency of most exoskeleton torque control algorithms is evaluated as the reduction rate of Metabolic Cost. In this study, we assume that the torque minimizing the Metabolic Cost is the optimal torque and propose a method for obtaining the torque.

Optimization of conversion of sulfur dioxide in sulfuric acid plant (황산 공장의 수율 최적화에 관한 연구)

  • 원종국;조영상;정태경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.664-666
    • /
    • 1987
  • In this study, the computation of optimum operating conditions for catalytic oxidation of sulfur dioxide to sulfur trioxide in CONVERTER which determines the yield ultimately in sulfuric acid plant is performed on an IBM/XT computer. The process simulator of rigorous converter model including mass & energy balance equations and supporting equations is linked to optimizer, which produces the desired results successfully.

  • PDF

Engineering based on Simulation Technique for Overseas Power Plant Projects (시뮬레이션 기술 적용 해외발전사업 엔지니어링)

  • Baek, Sehyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.63-67
    • /
    • 2021
  • 해외 발전사업의 기술 경쟁력 우위 선점을 위해서는 발전시스템에 대한 최적설계기술 및 발전소 운영 기간 중 최소 비용으로 높은 신뢰도의 설비 관리, 최적 성능 유지를 할 수 있는 O&M 관리 기술이 필요하다. 전력연구원은 해외발전사업 전주기 기술지원을 위한 연구개발을 수행하고 있다.

Study on the Prediction of Absorption Performance by the Optimization of a Vertical Absorber (수직형 흡수기 최적화에 따른 흡수 성능 예측에 관한 연구)

  • Kim, Jung-Kuk;Cho, Keum-Nam
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.194-202
    • /
    • 2005
  • The present study was analytically and experimentally carried out to predict the absorption characteristics on combined heat and mass transfer process in a vertical falling film of variable absorbers. Heat and mass transfer enhancements were analytically investigated. Effects of geometric parameters by insert device (spring) and corrugate, flow pattern on absorption performances has been also investigated. Especially, the optimal values of absorber geometry (ID=22.8mm, L=1150m) and kinetic variables (solution flow rate, flow pattern) for maximum absorption performance has been predicted by the numerical analysis. The maximum absorption performance in a numerical analysis and experiment was shown at the wavy-flow by insert device (spring).

Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper

  • Aly, Aly Mousaad
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.473-500
    • /
    • 2014
  • Tuned mass dampers (TMDs) have been installed in many high-rise buildings, to improve their resiliency under dynamic loads. However, high-rise buildings may experience natural frequency changes under ambient temperature fluctuations, extreme wind loads and relative humidity variations. This makes the design of a TMD challenging and may lead to a detuned scenario, which can reduce significantly the performance. To alleviate this problem, the current paper presents a proposed approach for the design of a robust and efficient TMD. The approach accounts for the uncertain natural frequency, the optimization objective and the input excitation. The study shows that robust design parameters can be different from the optimal parameters. Nevertheless, predetermined optimal parameters are useful to attain design robustness. A case study of a high-rise building is executed. The TMD designed with the proposed approach showed its robustness and effectiveness in reducing the responses of high-rise buildings under multidirectional wind. The case study represents an engineered design that is instructive. The results show that shear buildings may be controlled with less effort than cantilever buildings. Structural control performance in high-rise buildings may depend on the shape of the building, hence the flow patterns, as well as the wind direction angle. To further increase the performance of the robust TMD in one lateral direction, active control using LQG and fuzzy logic controllers was carried out. The performance of the controllers is remarkable in enhancing the response reduction. In addition, the fuzzy logic controller may be more robust than the LQG controller.