• 제목/요약/키워드: mass irregularities

검색결과 31건 처리시간 0.019초

사상체질(四象體質)에 따른 여고생의 월경장애와 Inbody 검사결과와의 관계 (Relationships of High School Girls Menstrual Disorders with the Inbody Test Results by Sasang Constitutions)

  • 조혜숙;김수현;김종원;이인선
    • 대한한방부인과학회지
    • /
    • 제26권4호
    • /
    • pp.150-168
    • /
    • 2013
  • Purpose: The purpose of this study is to find out the patterns of teenage girls who is easy to suffer from dysmenorrhea with the Inbody test results by Sasang constitutions. Methods: The data from the 1681 participants were collected using a structured menstrual history questionnaire. Based on the survey responses, we had 97 adolescents with menstrual disorder as the test group and 97 adolescents without menstrual disorder as the control group. The clinical trials subjects were asked to respond to another questionnaire for identifying their constitutional types and undergo Inbody test. Results: The result of a comparison of the test and control groups showed that there' no relevance to the body fat mass and body fat percentage with menstrual irregularities. The lesser yang person with menstrual irregularities was no relevance to the body fat percentage. The greater yin person with menstrual irregularities was especially lacking in body fat mass and body fat percentage. The lesser yin person with menstrual irregularities was poor in body fat mass. Conclusions: As for study, female high school students with menstrual disorders have nothing to do with muscle mass. Body fats shortage could pose problems. According to the study, Taeumin female high school students usually needed to higher body fat than a general standard. It seems to be needed more body fat and weight than modern standards in period of poor sexuality for having a normal menorrhea especially Taeumin. It will take some continuing study that BMI standards should be changed or not on the Sasang constitutions.

수직적 비정형성을 지니는 구조물의 내진성능평가 (Seismic Capacity Evaluation of the Structures with Vertical Irregularities)

  • 홍성걸;김남희;하태휴
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.208-215
    • /
    • 2001
  • The vertical irregularities occurred in the structure may lessen the overall seismic capacity of the structure. Seismic capacity evaluation guidelines (e.g. FEMA 175, ATC-14) propose the criterion for the vertical irregularities of mass, stiffness and strength respectively. But, the criterion seems groundless and leads us to make a true/false decision only. This study is to draw a reasonable basis on which multi-level grading is possible based fur the evaluation of existing buildings. Time history analysis for 3-,5-, and 10-story steel frame structures has been performed using several earthquake data. ANN (Artificial Neural Network) is introduced to find the relative contribution factor of the irregularities along the irregular position. Also, the application system fur the seismic capacity evaluation can be established using the trained ANN.

  • PDF

NARX 신경망을 이용한 철도 궤도틀림 추정 (Estimation of track irregularity using NARX neural network)

  • 김만철;최배성;김유희;신수봉
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.275-280
    • /
    • 2011
  • Due to high-speed of trains, the track deformation increases rapidly and may lead to track irregularities causing the track stability problem. To secure the track stability, the continual inspection on track irregularities is required. The paper presents a methodology for identifying track irregularity using the NARX neural network considering non-linearity in the train structural system. A simulation study has been carried out to examine the proposed method. Acceleration time history data measured at a bogie were re-sampled to every 0.25m track irregularity. In the simulation study, two sets of measured data were simulated. The second data set was obtained by a train with 10% more mass than the one for the first data set. The first set of simulated data was used to train the series-parallel mode of NARX neural network. Then, the track irregularities at the second time period are identified by using the measured acceleration data. The closeness of the identified track irregularity to the actual one is evaluated by PSD and RMSE.

  • PDF

Collapse response assessment of low-rise buildings with irregularities in plan

  • Manie, Salar;Moghadam, Abdoreza S.;Ghafory-Ashtiany, Mohsen
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.49-71
    • /
    • 2015
  • The present paper aims at evaluating damage and collapse behavior of low-rise buildings with unidirectional mass irregularities in plan (torsional buildings). In previous earthquake events, such buildings have been exposed to extensive damages and even total collapse in some cases. To investigate the performance and collapse behavior of such buildings from probabilistic points of view, three-dimensional three and six-story reinforced concrete models with unidirectional mass eccentricities ranging from 0% to 30% and designed with modern seismic design code provisions specific to intermediate ductility class were subjected to nonlinear static as well as extensive nonlinear incremental dynamic analysis (IDA) under a set of far-field real ground motions containing 21 two-component records. Performance of each model was then examined by means of calculating conventional seismic design parameters including the response reduction (R), structural overstrength (${\Omega}$) and structural ductility (${\mu}$) factors, calculation of probability distribution of maximum inter-story drift responses in two orthogonal directions and calculation collapse margin ratio (CMR) as an indicator of performance. Results demonstrate that substantial differences exist between the behavior of regular and irregular buildings in terms of lateral load capacity and collapse margin ratio. Also, results indicate that current seismic design parameters could be non-conservative for buildings with high levels of plan eccentricity and such structures do not meet the target "life safety" performance level based on safety margin against collapse. The adverse effects of plan irregularity on collapse safety of structures are more pronounced as the number of stories increases.

Fundamental period of infilled RC frame structures with vertical irregularity

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Foskolos, Filippos;Fotos, Alkis;Tsaris, Athanasios K.
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.663-674
    • /
    • 2017
  • The determination of the fundamental period of vibration of a structure is essential to earthquake design. Current codes provide formulas for the approximate estimation of the fundamental period of earthquake-resistant building systems. These formulas are dependent only on the height of the structure or number of storeys without taking into account the presence of infill walls into the structure, despite the fact that infill walls increase the stiffness and mass of the structure leading to significant changes in the fundamental period. Furthermore, such a formulation is overly conservative and unable to account for structures with geometric irregularities. In this study, which comprises the companion paper of previous published research by the authors, the effect of the vertical geometric irregularities on the fundamental periods of masonry infilled structures has been investigated, through a large set of infilled frame structure cases. Based on these results, an attempt to quantify the reduction of the fundamental period due to the vertical geometric irregularities has been made through a proposal of properly reduction factor.

A novel approach for the definition and detection of structural irregularity in reinforced concrete buildings

  • S.P. Akshara;M. Abdul Akbar;T.M. Madhavan Pillai;Renil Sabhadiya;Rakesh Pasunuti
    • Structural Monitoring and Maintenance
    • /
    • 제11권2호
    • /
    • pp.101-126
    • /
    • 2024
  • To avoid irregularities in buildings, design codes worldwide have introduced detailed guidelines for their check and rectification. However, the criteria used to define and identify each of the plan and vertical irregularities are specific and may vary between codes of different countries, thus making their implementation difficult. This short communication paper proposes a novel approach for quantifying different types of structural irregularities using a common parameter named as unified identification factor, which is exclusively defined for the columns based on their axial loads and tributary areas. The calculation of the identification factor is demonstrated through the analysis of rectangular and circular reinforced concrete models using ETABS v18.0.2, which are further modified to generate plan irregular (torsional irregularity, cut-out in floor slab and non-parallel lateral force system) and vertical irregular (mass irregularity, vertical geometric irregularity and floating columns) models. The identification factor is calculated for all the columns of a building and the range within which the value lies is identified. The results indicate that the range will be very wide for an irregular building when compared to that with a regular configuration, thus implying a strong correlation of the identification factor with the structural irregularity. Further, the identification factor is compared for different columns within a floor and between floors for each building model. The findings suggest that the value will be abnormally high or low for a column in the vicinity of an irregularity. The proposed factor could thus be used in the preliminary structural design phase, so as to eliminate the complications that might arise due to the geometry of the structure when subjected to lateral loads. The unified approach could also be incorporated in future revisions of codes, as a replacement for the numerous criteria currently used for classifying different types of irregularities.

레일의 상하방향 불규칙성에 의한 차륜과 레일의 동 접촉력 (Dynamic Wheel/Rail Contact Force due to Rail Irregularities)

  • 이현엽
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.616-622
    • /
    • 1998
  • An analytical method has been developed to estimate the dynamic contact force between wheel and rail when trains are running on rail with vertical irregularities. In this method, the effect of Hertzian deformation at the contact point is considered as a linearized spring and the wheel is considered as an sprung mass. The rail is modelled as a discretely-supported Timoshenko beam, and the periodic structure theory was adopted to obtain the driving-point receptance. As an example, the dynamic contact force for a typical wheel/rail system was analysed by the method developed in this research and the dynamic characteristics of the system was also discussed. It is revealed that discretely-supported Timoshenko beam model should be used instead of the previously used continuously-supported model or discretelysupported Euler beam model, for the frequency range above several hundred hertz.

  • PDF

Seismic evaluation of vertically irregular building frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities

  • Nezhad, Moosa Ebrahimi;Poursha, Mehdi
    • Earthquakes and Structures
    • /
    • 제9권2호
    • /
    • pp.353-373
    • /
    • 2015
  • In this paper, the effects of different types of irregularity along the height on the seismic responses of moment resisting frames are investigated using nonlinear dynamic analysis. Furthermore, the applicability of consecutive modal pushover (CMP) procedure for computing the seismic demands of vertically irregular frames is studied and the advantages and limitations of the procedure are elaborated. For this purpose, a special moment resisting steel frame of 10-storey height was selected as reference regular frame for which the effect of higher modes is important. Forty vertically irregular frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities are created by applying two modification factors (MF=2 and 4) in four different locations along the height of the reference frame. Seismic demands of irregular frames are computed by using the nonlinear response history analysis (NL-RHA) and CMP procedure. Modal pushover analysis (MPA) method is also carried out for the sake of comparison. The effect of different types of irregularity along the height on the seismic demands of vertically irregular frames is investigated by studying the results obtained from the NL-RHA. To demonstrate the accuracy of the enhanced pushover analysis methods, the results derived from the CMP and MPA are compared with those obtained by benchmark solution, i.e., NL-RHA. The results show that the CMP and MPA methods can accurately compute the seismic demands of vertically irregular buildings. The methods may be, however, less accurate especially in estimating plastic hinge rotations for weak or weak-and-soft top and middle storeys of vertically irregular frames.

Effect of sequential earthquakes on evaluation of non-linear response of 3D RC MRFs

  • Oggu, Praveen;Gopikrishna, K.
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.279-293
    • /
    • 2021
  • Most of the existing seismic codes for RC buildings consider only a scenario earthquake for analysis, often characterized by the response spectrum at the specified location. However, any real earthquake event often involves occurrences of multiple earthquakes within a few hours or days, possessing similar or even higher energy than the first earthquake. This critically impairs the rehabilitation measures thereby resulting in the accumulation of structural damages for subsequent earthquakes after the first earthquake. Also, the existing seismic provisions account for the non-linear response of an RC building frame implicitly by specifying a constant response modification factor (R) in a linear elastic design. However, the 'R' specified does not address the changes in structural configurations of RC moment-resisting frames (RC MRFs) viz., building height, number of bays present, bay width, irregularities arising out of mass and stiffness changes, etc. resulting in changed dynamic characteristics of the structural system. Hence, there is an imperative need to assess the seismic performance under sequential earthquake ground motions, considering the adequacy of code-specified 'R' in the representation of dynamic characteristics of RC buildings. Therefore, the present research is focused on the evaluation of the non-linear response of medium-rise 3D RC MRFs with and without vertical irregularities under bi-directional sequential earthquake ground motions using non-linear dynamic analysis. It is evident from the results that collapse probability increases, and 'R' reduces significantly for various RC MRFs subjected to sequential earthquakes, pronouncing the vulnerability and inadequacy of estimation of design base shear by code-specified 'R' under sequential earthquakes.

수직질량 비정형이 존재하는 고층 강 모멘트-저항골조의 지진 거동 (Seismic Behavior of High-rise Steel Moment-resisting Frames with Vertical Mass Irregularity)

  • Park, Byong-Jeong;Song, In-Hawn
    • 한국지진공학회논문집
    • /
    • 제8권1호
    • /
    • pp.1-15
    • /
    • 2004
  • 고층의 강 모멘트저항골조에 대한 지진 응답을 살펴보기 위해서 동적해석을 실시하였다. 구조물은 세가지의 다른 설계절차로 의도적으로 설계하였고 그 세가지의 개념은 강도 지배설계, 강기둥-약보 지배설계, 횡변위 지배설계이다. 그렇게 설계한 구조물이 각각 질량비정형이 존재하도록 하여 횡변위, 소성한지, 이력에너지 입력 및 요구응력에 대해서 토론하였다. 미래에 설계에의 응용을 위해서 최대 지반가속도로 표현한 두 등급의 지진 하중을 이용해서 이력에너지 입력요구 곡선을 제시하였다.