• 제목/요약/키워드: mass estimation model

검색결과 272건 처리시간 0.028초

Estimation of the Properties for a Charring Material Using the RPSO Algorithm (RPSO 알고리즘을 이용한 탄화 재료의 열분해 물성치 추정)

  • Chang, Hee-Chul;Park, Won-Hee;Yoon, Kyung-Beom;Kim, Tae-Kuk
    • The KSFM Journal of Fluid Machinery
    • /
    • 제14권1호
    • /
    • pp.34-41
    • /
    • 2011
  • Fire characteristics can be analyzed more realistically by using more accurate properties related to the fire dynamics and one way to acquire these fire properties is to use one of the inverse property estimation techniques. In this study two optimization algorithms which are frequently applied for the inverse heat transfer problems are selected to demonstrate the procedure of obtaining pyrolysis properties of charring material with relatively simple thermal decomposition. Thermal decomposition is occurred at the surface of the charring material heated by receiving the radiative energy from external heat sources and in this process the heat transfer through the charring material is simplified by an unsteady 1-dimensional problem. The basic genetic algorithm(GA) and repulsive particle swarm optimization(RPSO) algorithm are used to find the eight properties of a charring material; thermal conductivity(virgin, char), specific heat(virgin, char), char density, heat of pyrolysis, pre-exponential factor and activation energy by using the surface temperature and mass loss rate history data which are obtained from the calculated experiments. Results show that the RPSO algorithm has better performance in estimating the eight pyrolysis properties than the basic GA for problems considered in this study.

A study on Hair Bundle Feature Estimation Based on Negative Stiffness Mechanism Using Integrated Vestibular Hair Cell Model (전정 유모세포 통합 모델을 이용한 반강성 기전 기반 섬모번들 특성 추정에 관한 연구)

  • Kim, Dongyoung;Hong, Kihwan;Kim, Kyu-Sung;Lee, Sangmin
    • Journal of Biomedical Engineering Research
    • /
    • 제34권4호
    • /
    • pp.218-225
    • /
    • 2013
  • In this paper hair bundle feature model and integration method for hair cell models were proposed. The proposed hair bundle feature model was based on spring-damper-mass model. Input of integrated vestibular hair cell model was frequency and output was interspike interval of hair cell that was reflected the feature of hair bundles. Irregular afferents that had a great gain variation showed reduction of negative stiffness section. Regular afferents that had a small gain variation, however, showed same feature with base negative stiffness feature. As a result, integrated vestibular hair cell model showed almost the same modeling data with experimental data in the modeled eleven frequency bands. It is verified that the proposed model is a good model for hair bundle feature modeling.

A Study of the Nonlinear Characteristics Improvement for a Electronic Scale using Multiple Regression Analysis (다항식 회귀분석을 이용한 전자저울의 비선형 특성 개선 연구)

  • Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • 제9권6호
    • /
    • pp.1-6
    • /
    • 2019
  • In this study, the development of a weight estimation model of electronic scale with nonlinear characteristics is presented using polynomial regression analysis. The output voltage of the load cell was measured directly using the reference mass. And a polynomial regression model was obtained using the matrix and curve fitting function of MS Office Excel. The weight was measured in 100g units using a load cell electronic scale measuring up to 5kg and the polynomial regression model was obtained. The error was calculated for simple($1^{st}$), $2^{nd}$ and $3^{rd}$ order polynomial regression. To analyze the suitability of the regression function for each model, the coefficient of determination was presented to indicate the correlation between the estimated mass and the measured data. Using the third order polynomial model proposed here, a very accurate model was obtained with a standard deviation of 10g and the determinant coefficient of 1.0. Based on the theory of multi regression model presented here, it can be used in various statistical researches such as weather forecast, new drug development and economic indicators analysis using logistic regression analysis, which has been widely used in artificial intelligence fields.

An Investigation into the Building's Thermal Mass Effect on the Variation of Indoor Temperature (건물의 축열질량이 실내기온 변화에 미치는 영향 평가)

  • Chun, Won-Gee;Jeon, Myung-Seok
    • Solar Energy
    • /
    • 제12권1호
    • /
    • pp.72-80
    • /
    • 1992
  • This paper is concerned with the accurate estimation of the thermal mass effect on the variation of indoor temperature for residential buildings. To carry out the analysis here, the method called "PSTAR(Primary and Secondary Terms Analysis and Renormalization)" has been extensively used. This method was originally developed by the National Renewable Energy Laboratory(NREL) in the United States. The test results reported here represent two extreme cases of the interior thermal mass, which demonstrate its effect on the interior thermal environment as well as on the overall thermal behavior of the building structure. The monthly heating and cooling loads are also extrapolated by using the renormalized model, which are crucial in designing and refurbishing HVAC systems for the building.

  • PDF

Numerical Simulation of Temperature and Stress Distribution in Mass Concrete with pipe cooling and Comparision with Experimental Measurements (매스콘크리트 시험체의 수화열 해석 및 실험)

  • 주영춘;김은겸;신치범;조규영;박용남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.269-274
    • /
    • 1999
  • Various method have been developed for mass concrete structures to reduce the temperature increase of concrete mass due to exothermic hydration reactions of concrete compounds and thereby to avoid thermal cracks. One of the methods widely acceptable for practical use is pipe cooling, in which cooling is achieved by circulating cold water through thin-wall steel pipes embedded in the concrete. A numerical simulation was performed to investigate the effectiveness of pipe cooling. A three-dimensional finite element method was proposed to analyse the transient three-dimensional heat transfer between the hardening concrete and the cooling water in pipe and to predict the stress development during the curing process. The effects of the cement type and content and the environment were taken into consideration by the heat generation rate and the boundary conditions, respectively. In order to test the validity of the numerical simulation, a model RC structure with pipe cooling was constructed and the time-dependent temperature and stress distributions within the structure as well as the variation of the temperature of cooling water along the pipe were measured. The results of the simulation agreed well the experimental measurements. The results of this study have important implications for the optimal design of the cooling pipe layout and for the estimation of thermal stress in order to eliminate thermal cracks.

  • PDF

Characteristics of particles at Kosan, Cheju Island: Intensive study results duting March 11 .sim. 17 1994 (제주도 고산지역 입자특성 : 1994년 3월 11일 - 17일 측정결과)

  • 김용표;심상규;문길주;백남준;김성주;허철구;강창희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제11권3호
    • /
    • pp.263-272
    • /
    • 1995
  • Characteristics of anbient at Korean, Cheju Island have been studied during the intensive field study period on March 11 .sim. 17, 1994 in collaboration with other research organizations from Korea and abroad. The particle size distribution was measured using an Electrical Aerosol Analyzer(EAA) and an Optical particle Counter(OPC). Fine particles(PM1 and PM3) have been collected by filter pack samplers and their ionic compositions have been analyzed. sampling errors inherent to the filter pack sampling method are discussed and the method to analyze those errors are presented. The rine mass concentrations of this study show very similar mass concentrations when Seoul is clear. This is somewhat surprising result, because the most of researchers believe that Kosan is one of the cleanest area in Korea. Bimodal volume size distributions with peak values around 0.1 .sim. 0.2.mu.m and 3.mu.m in particle dimeter were observed for most of the measurement period, particle mass loadings and ionic composition data show a large fraction of particles are from non-sea salt origins. Estimation of water content and acidity of particles based on measurement by a gas/particle equilibrium model, SCAPE, reveals that the pH values of particles are comparable to or lower than those estimated based on measurements in Los Angeles, U.S.A. during the SCAQS study. These findings with the meteorological conditions during the study period suggest that the particles collected during the period have originated from outside Cheju Island.

  • PDF

Quantitative Source Estimation of PM-10 in Seoul Area (서울시 PM-10 오염원의 정량적 기여도 추정)

  • 유정석;김동술;김윤신
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제11권3호
    • /
    • pp.279-290
    • /
    • 1995
  • Recently in Korea, due to the significant drop of lead and bromine levels as a marker of autoemission source in the urban areas, the conventional application of receptor methods has many difficulties to properly apportion mass contribution of some sources. It is then needed to urgently develop alternative source profiles and identify new emission markers. Thus, the study has extensively examined the results obtained from using PAHs and elemental data for receptor modeling and has provided an opportunity to identify alternative source compositions and to determine a proper number of the ambient emission sources in Seoul area. The purpose of the study is to identify the sources of PM-10 and to estimate their mass contributions in Seoul area. Thus, a receptor model, target transformation factor analysis(TTFA) has been massively applied. The TTFA offers the possibility of determining the number of sources and their mass contributions. The input data used in this study are composed of two separate sets: fine (d$_{p}$ < 2.5.mu.m) and coarse (2.5.mu.m < d$_{p}$ < 10.mu.m) mode aerosol samples. Each sample was simultaneously collected by a PM-10 dichotomous sampler during the daytime(8 AM to 8 PM) and the nighttime(8 PM to 8 AM) from February to October 1993 on the Sungdong-Gu, Seoul. All the samples were analyzed to determine the levels of 10 inorganic elements by an XRF system as well as 14 PAHs by a HPLC. However, only 8 inorganic elements and 7 PAHs were used for the various statistical analysis.sis.

  • PDF

Vibration of a Circular plate on Pasternak foundation with variable modulus due to moving mass

  • Alile, Mohsen Rezvani;Foyouzat, Mohammad Ali;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.757-770
    • /
    • 2022
  • In this paper, the vibration of a moderately thick plate to a moving mass is investigated. Pasternak foundation with a variable subgrade modulus is considered to tackle the shortcomings of Winkler model, and an analytical-numerical solution is proposed based on the eigenfunction expansion method. Parametric studies by using both CPT (Classical Plate Theory) and FSDT (First-Order Shear Deformation Plate Theory) are carried out, and, the differences between them are also highlighted. The obtained results reveal that utilizing FSDT without considering the rotary inertia leads to a smaller deflection in comparison with CPT pertaining to a thin plate, while it demonstrates a greater response for plates of higher thicknesses. Moreover, it is shown that CPT is unable to properly capture the variation of the plate thickness, thereby diminishing the accuracy as the thickness increases. The outcomes also indicate that the presence of a foundation contributes more to the dynamic response of thin plates in comparison to moderately thick plates. Furthermore, the findings suggest that the performance of the moving force approach for a moderately thick plate, in contrast to a thin plate, appears to be acceptable and it even provides a much better estimation in the presence of a foundation.

Probabilistic analysis for face stability of tunnels in Hoek-Brown media

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.595-603
    • /
    • 2019
  • A modified model combining Kriging and Monte Carlo method (MC) is proposed for probabilistic estimation of tunnel face stability in this paper. In the model, a novel uniform design is adopted to train the Kriging, instead of the existing active learning function. It has advantage of avoiding addition of new training points iteratively, and greatly saves the computational time in model training. The kinematic approach of limit analysis is employed to define the deterministic computational model of face failure, in which the Hoek-Brown failure criterion is introduced to account for the nonlinear behaviors of rock mass. The trained Kriging is used as a surrogate model to perform MC with dramatic reduction of calls to actual limit state function. The parameters in Hoek-Brown failure criterion are considered as random variables in the analysis. The failure probability is estimated by direct MC to test the accuracy and efficiency of the proposed probabilistic model. The influences of uncertainty level, correlation relationship and distribution type of random variables are further discussed using the proposed approach. In summary, the probabilistic model is an accurate and economical alternative to perform probabilistic stability analysis of tunnel face excavated in spatially random Hoek- Brown media.

Association of Thigh Muscle Mass with Insulin Resistance and Incident Type 2 Diabetes Mellitus in Japanese Americans

  • Han, Seung Jin;Boyko, Edward J.;Kim, Soo-Kyung;Fujimoto, Wilfred Y.;Kahn, Steven E.;Leonetti, Donna L.
    • Diabetes and Metabolism Journal
    • /
    • 제42권6호
    • /
    • pp.488-495
    • /
    • 2018
  • Background: Skeletal muscle plays a major role in glucose metabolism. We investigated the association between thigh muscle mass, insulin resistance, and incident type 2 diabetes mellitus (T2DM) risk. In addition, we examined the role of body mass index (BMI) as a potential effect modifier in this association. Methods: This prospective study included 399 Japanese Americans without diabetes (mean age 51.6 years) who at baseline had an estimation of thigh muscle mass by computed tomography and at baseline and after 10 years of follow-up a 75-g oral glucose tolerance test and determination of homeostasis model assessment of insulin resistance (HOMA-IR). We fit regression models to examine the association between thigh muscle area and incidence of T2DM and change in HOMA-IR, both measured over 10 years. Results: Thigh muscle area was inversely associated with future HOMA-IR after adjustment for age, sex, BMI, HOMA-IR, fasting plasma glucose, total abdominal fat area, and thigh subcutaneous fat area at baseline (P=0.033). The 10-year cumulative incidence of T2DM was 22.1%. A statistically significant interaction between thigh muscle area and BMI was observed, i.e., greater thigh muscle area was associated with lower risk of incident T2DM for subjects at lower levels of BMI, but this association diminished at higher BMI levels. Conclusion: Thigh muscle mass area was inversely associated with future insulin resistance. Greater thigh muscle area predicts a lower risk of incident T2DM for leaner Japanese Americans.