• Title/Summary/Keyword: mass culture system

Search Result 265, Processing Time 0.033 seconds

Selection of Filamentous Cyanobacteria and Optimization of Culture Condition for Recycling Waste Nutrient Solution (폐양액 활용을 위한 Filamentous Cyanobacteria의 선발 및 최적배양)

  • Yang, Jin-Chul;Chung, Hee-Kyung;Lee, Hyoung-Seok;Choi, Seung-Ju;Yun, Sang-Soon;Ahn, Ki-Sup;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • The discharge of waste nutrient solution from greenhouse to natural ecosystem leads to the accumulation of excess nutrients that results in contamination or eutrophication. There is a need to recycle the waste nutrient solution in order to prevent the environmental hazards. The amount and kind of nutrients in waste nutrient solution might be enough to grow photosynthetic microorganisms. Hence in the present study, we examined the growth and mass cultivation of cyanobacteria in the waste nutrient solution with an objective of removing N and P and concomitantly, its mass cultivation. Four photosynthetic filamentous cyanobacteria (Anabaena HA101, HA701 and Nostoc HN601, HN701) isolated from composts and soils of the Chungnam province were used as culture strains. Among the isolates, Nostoc HN601 performed faster growth rate and higher N and P uptake in the BG-II ($NO_3{^-}$) medium when compared to those of other cyanobacterial strains. Finally, the selected isolate was tested under optimum conditions (airflow at the rate of $1L\;min^{-1}$. in 15 L reactor, initial pH 8) in waste nutrient solution from tomato hydroponic in green house condition. Results showed to remove 100% phosphate from the waste nutrient solution in the tomato hydroponics recorded over a period of 7 days. The growth rate of Nostoc HN601 was $16mg\;Chl-a\;L^{-1}$ in the waste nutrient solution from tomato hydroponics with optimum condition, whereas growth rate of Nostoc HN601 was only $9.8mg\;Chl-a\;L^{-1}$ in BG-11 media. Nitrogen fixing capacity of Nostoc HN601 was $20.9nmol\;C_2H_4\;mg^{-1}\;Chl-a\;h^{-1}$ in N-free BG-11. The total nitrogen and total phosphate concentration of Nostoc HN601 were 63.3 mg N gram dry weight $(GDW)^{-1}$ and $19.1mg\;P\;GDW^{-1}$ respectively. Collectively, cyanobacterial mass production using waste nutrient solution under green house condition might be suitable for recycling and cleaning of waste nutrient solution from hydroponic culture system. Biomass of cyanobacteria, cultivated in waste nutrient solution, could be used as biofertilizer.

Wastewater Utilization: A Place for Managed Wetlands - Review -

  • Humenik, F.J.;Szogi, A.A.;Hunt, P.G.;Broome, S.;Rice, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.629-632
    • /
    • 1999
  • Constructed wetlands are being used for the removal of nutrients from livestock wastewater. However, natural vegetation typically used in constructed wetlands does not have marketable value. As an alternative, agronomic plants grown under flooded or saturated soil conditions that promote denitrification can be used. Studies on constructed wetlands for swine wastewater were conducted in wetland cells that contained either natural wetland plants or a combination of soybeans and rice for two years with the objective of maximum nitrogen reduction to minimize the amount of land required for terminal treatment. Three systems, of two 3.6 by 33.5 m wetland cells connected in series were used; two systems each contained a different combination of emergent wetland vegetation: rush/bulrush (system 1) and bur-reed/cattail (system 2). The third system contained soybean (Glycine max) in saturated-soil-culture (SSC) in the first cell, and flooded rice (Oryza sativa) in the second cell. Nitrogen (N) loading rates of 3 and $10kg\;ha^{-1}\;day^{-1}$ were used in the first and second years, respectively. These loading rates were obtained by mixing swine lagoon liquid with fresh water before it was applied to the wetland. The nutrient removal efficiency was similar in the rush/bulrush, bur-reed/cattails and agronomic plant systems. Mean mass removal of N was 94 % at the loading rate of $3kg\;N\;ha^{-1}\;day^{-1}$ and decreased to 71% at the higher rate of $10kg\;N\;ha^{-1}\;day^{-1}$. The two years means for above-ground dry matter production for rush/bulrushes and bur-reed/cattails was l2 and $33Mg\;ha^{-1}$, respectively. Flooded rice yield was $4.5Mg\;ha^{-1}$ and soybean grown in saturation culture yielded $2.8Mg\;ha^{-1}$. Additionally, the performance of seven soybean cultivars using SSC in constructed wetlands with swine wastewater as the water source was evaluated for two years, The cultivar Young had the highest yield with 4.0 and $2.8Mg\;ha^{-1}$ in each year, This indicated that production of acceptable soybean yields in constructed wetlands seems feasible with SSC using swine lagoon liquid. Two microcosms studies were established to further investigate the management of constructed wetlands. In the first microcosm experiment, the effects of swine lagoon liquid on the growth of wetland plants at half (about 175 mg/l ammonia) and full strength (about 350 mg/l ammonia) was investigated. It was concluded that wetland plants can grow well in at least half strength lagoon liquid. In the second microcosm experiment, sequencing nitrification-wetland treatments was studied. When nitrified lagoon liquid was added in batch applications ($48kg\;N\;ha^{-1}\;day^{-1}$) to wetland microcosms the nitrogen removal rate was four to five times higher than when non-nitrified lagoon liquid was added. Wetland microcosms with plants were more effective than those with bare soil. These results suggest that vegetated wetlands with nitrification pretreatment are viable treatment systems for removal of large quantities of nitrogen from swine lagoon liquid.

Establishment of Callus Induction and Plant Regeneration System from Mature Seeds of Miscanthus sinensis (억새(Miscanthus sinensis) 성숙 종자로부터의 캘러스 유도 및 식물체 재분화 체계 확립)

  • Cho, Joon-Hyeong;Byeon, Ji-Hui
    • Korean Journal of Plant Resources
    • /
    • v.24 no.5
    • /
    • pp.628-635
    • /
    • 2011
  • This study was conducted to establish the tissue culture system for Korean domestic Miscanthus sinensis, which is used in various purposes such as forage, and bio-energy resources. With the mature seed of Miscanthus, optimum concentrations of plant growth regulators were identified for an efficient callus induction and regeneration. Among the treatments of 1~10 $mg{\cdot}L^{-1}$ 2,4-D, IBA, or NAA, callus induction rate was highest (85.3%) on MS medium containing 5 $mg{\cdot}L^{-1}$ 2,4-D. Under the condition, the callus were efficiently induced and proliferated with comparably lower frequencies of callus browning. In shoot regeneration, the treatment of NAA combined with BAP seemed to contribute more efficient conditions to shoot regeneration than those of NAA with Kinetin or 2-iP. Especially, regeneration efficiency and number of regenerated plants were 83.7% and 5.5 in 3 $mg{\cdot}L^{-1}$ NAA with 5 $mg{\cdot}L^{-1}$ BAP, respectively, which were higher frequencies than those in NAA with Kinetin or 2-iP. In results, 5 $mg{\cdot}L^{-1}$ 2,4-D and 3 $mg{\cdot}L^{-1}$ NAA combined with 5 $mg{\cdot}L^{-1}$ BAP were efficient for embryogenic callus induction and regeneration of Miscanthus. This system would be useful for mass-propagation and developing new cultivars via tissue culture of Miscanthus sinensis.

Mass Culture and Ginsenoside Production of Ginseng Hairy Root by Two-Step Culture Process (2계단 배양방법을 이용한 인삼 모상근의 대량배양과 Ginsenoside 생산)

  • Ko, Kyeong-Min;Yang, Deok-Chun;Park, Ji-Chang;Choi, Kang-Ju;Choi, Kwang-Tae;Hwang, Baik
    • Journal of Plant Biology
    • /
    • v.39 no.1
    • /
    • pp.63-69
    • /
    • 1996
  • A hairy root clone of Panax ginseng C.A. Meyer, HRB-15 was cultured iu various conditions with 3 L bubble type bioreactor to enhance both growth and ginsenoside production. The hairy roots were more rapidly grown under the dark condition than under the light condition. However, total amount of ginsenoside of hairy roots cultured under the light for 30 days increased 2 folds as compared with the dark condition and was 1.10% based on 6 ginsenosides. Especially, ginsenoside-Re was significantly increased and some ginsenosides except for ginsenoside-Re was slightly reduced. Also, the growth of hairy roots decreased about 30% as compared with the dark condition. In contrast, addition of sodium acetate led to decreased production of ginsenoside and growth of hairy roots under light condition. The influence of potassium dihydrogenphosphate concentration was examined in MS medium and a 1.25 mM concentration was found to be the most appropriate for growth and ginsenoside production under light condition. Two-step process of hairy roots culture with yeast elicitation or without ammonia in culture medium was developed to enhance growth and giusenoside synthesis. $50\;\mu\textrm{g}$ of yeast elicitor per g of fresh weight showed a synergistic effect on the ginsenoside synthesis of hairy roots on 20 days after culture. At that time, the content of total ginsenoside was 1.15%, while the growth of hairy roots decreased 21 % as compared with the dark condition. In addition, when elimination of ammonia on 20 days after culture, the content of total ginsenoside was 1.26% with significant increment of ginsenoside-Rd (0.27%) in addition to ginsenoside-Re and the growth of hairy roots decreased 10% as compared with the dark condition. In this system, we have demonstrated a unique two-step process of hairy root cultures to maximize biomass and secondary metabolites. It has found possibility to enhance ginsenosides production by growing hairy roots in this method.

  • PDF

A Study of the Formative Characteristics in Architecture and Fashion of the Modernism Period (모더니즘 시대의 건축과 패션에 나타난 조형적 특성에 관한 연구)

  • Kim Hye-Young;Hur Da-Sul
    • Journal of the Korean Society of Costume
    • /
    • v.55 no.4 s.94
    • /
    • pp.62-78
    • /
    • 2005
  • The modern period was the time that the most radical and extensive social and mental changes were occurring throughout the history, and modernism was prevailing as a general cognition system of people. Modernism, which carries principles of progress, belief in application of scientific technology, worship of reason, ideal of liberty as a col-e value of civilization, was plated as a leading ideology in the realm of society, culture and art In the early 20th century. In this study, the formative characteristics of modernism seen in architecture and fashion are analogized and analyzed in four ways ell the basis of the theory of p. Greenhalgh. First, 'Standardization for mass-production', which is analogized which P. Greenhalgh's 'Decompart-mentalisation', 'Social Morality', and' Technology'. Standardization for mass-production in architecture focuses on the development of a design prototype in order to mass produce; the development of ready-made clothes is actively done ill the fashion area for the same purpose as well. Second, 'Rational functionality' coming from P. Greenhalgh's 'The total work of art' and 'Function'. While rational functionality in architecture puts an emphasis on the rational operation of all the functions in regard to the relation between each part and the whole, rational functionality in fashion call be mainly seen in a dramatic increase in physical activity which could be hardly found before the modernism period. Namely, all the fashion design elements are developed for a certain rational and functional design on each part as well as on the whole in order to greatly increase physical activity. Third, 'the pursuit for genuineness of objects and universality of beauty' is on the analogy of P Greenhalgh's 'Truth', 'Anti-historicism', 'Abstraction', 'Internationalism/Universality'. This idea is adopted in architecture in the form of design of geometrical abstraction. In the same way, design using geometrical abstraction comes to have a significant meaning in fashion of the modernism period. So to speak, modernism architecture and fashion can be reborn to become an inter·national style by giving up the decorative and regional design prevailing before modernism and by expressing universal aesthetics in the form of simplicity and abstraction instead. Fourth, 'Expression of progress through a change in a viewpoint' stems from P. Greenhalgh's 'Progress', 'Transformation of Consciousness', 'Theology'. In architecture, this concept appears by using new construction materials and methods and by representing new aesthetical idea. As a result, it makes it possible for people to make progress for better lives. Like in architecture, new attempts for material application and processing are made in fashion. This gives rise to a general change in a viewpoint related to fashion, so that a flew fashion design which there has never been before can come out.

Growth of the Scallop, Patinopecten yessoensis in Suspended Culture in the East Coast of Korea (동해안 참가리비, Patinopecten yessoensis의 성장)

  • Park, Young-Je;Rho, Sum;Lee, Chae-Sung
    • Journal of Aquaculture
    • /
    • v.14 no.3
    • /
    • pp.181-195
    • /
    • 2001
  • To stabilize the lantern cage culture system of Patinopecten yessoensis(Jay) in the eastern coast of Korean peninsula, optimum conditions such as time of transplantation, rearing density and depth, and time of harvest were identified. During the period from January 1991 to December 1998, the water temperature ranged from 4.7 to 21.4$^{\circ}C$ at 15-30 m depth and 4.9 to 25.7$^{\circ}C$ at the surface; these thermal ranges were within the optimal ranges (5-23$^{\circ}C$) prevailing at 15-30 m depth at surface water. Annual thermal changes indicated that the prevailing temperature during the years 1993 and 1996 was near optimum, but higher during the years 1994, 1997 and 1998, when mass mortality and growth retardation occurred. Salinity (32.0- 34.4$\textperthousand$) and dissolved oxygen (4.14 -8.11 $\mu\textrm{g}$/l) at 15 m depth were well within the optimum ranges. The chlorophyll concentrations (0.06 - 2.73$\mu\textrm{g}$/l) indicated that the study area was oligotrophic, although mass mortality did occur, when chlorophyll concentrations were high, especially in summer. Hence water temperatures and chlorophyll concentration are major factors related to survival and growth of the scallop. In terms of the shell height maximum growth occurred during spring (March-May; 8 - l3$^{\circ}C$) and fall (October-December; 11-l7$^{\circ}C$) in the lantern cage culture. Slow growth was recorded during late winter January-february; less than 7$^{\circ}C$) and mid-summer (August- September; more than 18$^{\circ}C$). Daily growth of shell height and total weight were 0.02∼0.24 mm and -0.07∼0.90 g at the rearing density of 12 individuals per net. Optimal .earing density in the lantern cage (ø50${\times}$20 cm) was 10∼15 individuals with the shell height of 5∼6 cm. The fastest growth rates were observed at 15∼20 m depth; however, it is recommended that 20∼30 m would be optimal. The scallops require 22 months to attain the commercial size of 10 cm shell height and 140 g total weigh, and are best harvested and sold during March-April.

  • PDF

Photosynthetic characteristics and growth analysis of Angelica gigas according to different hydroponics methods (당귀의 광합성 특성과 수경재배 방식에 따른 생장 분석)

  • Park, Jong-Seok;Kim, Sung-Jin;Kim, Hong-Ju;Choi, Jong-Myung;Lee, Gong-In
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.321-326
    • /
    • 2014
  • The aim of this study was to investigate which hydroponic system is the optimum for growth and photosynthetic characteristics of Angelica gigas during experiment. Angelica gigas 'Manchu' were sowed and managed under a growth room chamber. The environmental conditions (temperature $22^{\circ}C/18^{\circ}C$ (day/night), relative humidity 50-70%, photosynthetic photon flux density (PPFD) $120{\pm}6{\mu}mol\;m^{-2}s^{-1}$) were maintained for 3 weeks. Forty eight seedlings with 4-5 leaves were transplanted in deep flow technique (DFT), substrate, and spray culture systems [culture bed: 800 (L) ${\times}$ 800 (W) ${\times}$ 400 mm(H)] under $150{\pm}5{\mu}mol\;m^{-2}s^{-1}$ PPFD provided with fluorescence lamps and cultivated for 11 weeks. At the end of the experiment, fresh and dry weights, leaf lenghth and width, SPAD, root fresh, and dry weights, and root volume of Anglica gigas were measured. Photosynthetic rate of Anglica gigas were measured with portable photosynthesis systems to investigate optimum PPFD, $CO_2$ concentration, and air temperature conditions. Fresh and dry weights of Anglica gigas grown in substrate were significantly greater than DFT-treated, but there were not significant with spray treatment. Leaf photosynthesis of Anglica gigas showed the tendency to sharply increase as PPFD was increased from 50 to $200{\mu}mol\;m^{-2}s^{-1}$. Though $CO_2$ saturation point was around $1000-1200{\mu}mol\;mol^{-1}$, increase in air temperature from 16 to $26^{\circ}C$ did not quite affect photosynthesis of Anglica gigas. In conclusion, Anglica gigas may be optimally cultivated with a spray culture system as air temperature, PPFD, and $CO_2$ concentration for environment are controlled at $20{\pm}3^{\circ}C$, $150{\mu}mol\;m^{-2}s^{-1}$, and around $1000{\mu}mol\;mol^{-1}$ for mass production.

Studies on the Differentiation of Chondrogenic Cells in Developing Chick Embryo I. Cellular Aggregation and Chondrogenesis (발생계배 연골세포의 분화기구에 대한 연구 I. 세포응집과 분화와의 관계)

  • 박대규;손종경;유정아;유병제;강신성
    • The Korean Journal of Zoology
    • /
    • v.33 no.3
    • /
    • pp.310-321
    • /
    • 1990
  • To establish the in vitro culture system and quantitation for chondrogenesis, and to investigate the relationship between cell aggregation and chondrogenesis, chick limb bud mesenchymal cells of Hamburger-Hamilton stage 23/24 were micromass cultured in various cell densities. The chondrogenesis was assayed based on checking the alcian blue-stained nodule numbers, the amount of alcian blue extraded, the change in cell numbers, the rate of [35 S] sulfate incorporation and expression of type II collagen. Mesenchymal cells plated with an initial density of high (1 x 107 cells/ml)- and intermediates (5. $\times$ 106 cells/ml)-density were differentiated into cartilage. On the other hand, the cells of low density (2 x 106 cells/mi, 5 $\times$ 105 cells/ml) of stage 23/24 cells and the stage 18/19 cells in three kinds of cell density did not differentiate into cartilage even though the cells formed an aggregated core at the center of cultured mass. From these results and others obtained in this study, it can be stated that the stage 23/24 mesenchymal cells are likely to pass over the aggregation step and have the potentiality to differentiate into chondrocytes. Thus chondrogenesis in vitro can be observed when mesenchymal cells are plated over the threshold density of 5 $\times$ 106 cells/ml. Hyaluronidase (HAase) activity was relatively constant throughout the culture, suggesting that the role of HAase may not be important for the cells of stage 23/24.

  • PDF

Expression and Activation of Akt/PKB Protein Kinase using Escherichia coli (대장균을 이용한 Akt/PKB Protein Kinase의 발현 및 활성화)

  • Lee, Jae-Hag
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.105-109
    • /
    • 2009
  • Among signal transduction systems by protein phosphorylation Akt/PKB protein kinase which is one of serine/threonine kinases, is known to regulate the survival and death of the cell and glucose metabolism. Thus, Akt/PKB protein kinase has been used as one of the target proteins to find anti-cancer agents from natural products. In this study, human Akt/PKB protein kinase was expressed in Escherichia coli expression system for the mass production. Human Akt/PKB protein kinase expressed in E. coli formed inclusion body under the general condition. However, most of the expressed protein was solubilized under the culture temperature at $27^{\circ}C$ and 0.01-0.09 mM of IPTG for induction of the protein expression. The expressed protein was purified using $Ni^{2+}$-NTA agarose column and confirmed by using anti-Akt antibody. Subsequently, the purified human Akt/PKB protein kinase was activated by in vitro phosphorylation using cellular extract containing kinases. The activated protein was confirmed to phosphorylate the specific fluorescent peptide specially designed as the artificial substrate for Akt/PKB protein kinase.

Culturing Method and Dietary Value of Benthic Copepod, Tigriopus japonicus (부착성 요각류, Tigriopus japonicus의 배양방법 및 먹이효율)

  • 박흠기;허성범;김철원
    • Journal of Aquaculture
    • /
    • v.11 no.2
    • /
    • pp.261-269
    • /
    • 1998
  • The harpacticoid copepod, Tigriopus japonicus is one of the important zooplankton as a live food the production of marine fish fry. This reserch was carried out to investigate the culturing method and dietary value of T. japonicus. The reproduction of this copepod was analysed in the culturing systems (tne opened and the closed systems) and the surface area of the substate plates for the mass culture. Survival rate of the mature female and the number of nauplii produced per female for two day was higher in the open culturing system than in the close system. However, the result of survival rate of the nauplius was reversed. Larger surface area of the culturing vessel accommodated higher density of this bentic copepod. In polyculture of T. japonicus and rotifer (B. plicatilis), growth of T. japonicus seems to be dependent on the rotifer density. But rotifer seems to be independent on the copepod. With regard to dietary value, this copepod is better than Artemia nauplius for the larvae of red sea bream and tiger puffer which feed by picking. However, it is inadequate for bottom fish larvae as flounder.

  • PDF