• Title/Summary/Keyword: mask fabrication

Search Result 287, Processing Time 0.026 seconds

Possibility of Spreading Infectious Diseases by Droplets Generated from Semiconductor Fabrication Process (반도체 FAB의 비말에 의한 감염병 전파 가능성 연구)

  • Oh, Kun-Hwan;Kim, Ki-Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.111-115
    • /
    • 2022
  • Objectives: The purpose of this study is to verify whether droplet-induced propagation, the main route of infectious diseases such as COVID-19, can occur in semiconductor FAB (Fabrication), based on research results on general droplet propagation. Methods: Through data surveys droplet propagation was modeled through simulation and experimental case analysis according to general (without mask) and mask-wearing conditions, and the risk of droplet propagation was inferred by reflecting semiconductor FAB operation conditions (air current, air conditioning system, humidity, filter conditions). Results: Based on the results investigated to predict the possibility of spreading infectious diseases in semiconductor FAB, the total amount of droplet propagation (concentration), propagation distance, and virus life in FAB were inferred by reflecting the management parameter of semiconductor FAB. Conclusions: The total amount(concentration) of droplet propagation in the semiconductor fab is most affected by the presence or absence of wearing a mask and the line air dilution rate has some influence. when worn it spreads within 0.35~1m, and since the humidity is constant the virus can survive in the air for up to 3 hours. as a result the semiconductor fab is judged to be and effective space to block virus propagation due to the special environmental condition of a clean room.

Nanostencil fabrication using FIB milling (FIB 밀링을 이용한 나노스텐실 제작)

  • 김규만;정성일;오현석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.871-874
    • /
    • 2004
  • Fabrication of a high-resolution shadow mask, or called nanostencil, is presented. This high-resolution shadowmask is fabricated by a combination of MEMS processes and focused ion beam (FIB) milling. 500 nm thick and 2x2 mm large membranes are made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. Subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to high resolution of FIB milling process, nanoscale apertures down to 70 nm could be made into the membrane.

  • PDF

Microlens Micro V-groove Fabrication by the Modified LIGA Process (변형 DEEP X-ray를 이용한 마이크로 렌즈 및 V-groove 제작)

  • 이정아;이승섭;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.290-295
    • /
    • 2004
  • Mircolens and microlens V-groove are realized using a novel fabrication technology based on the exposure of a resist, usually PMMA, to deep X-rays and subsequent thermal treatment and inclined deep X-ray lithography, respectively. The fabrication technology is very simple and produces microlenses and microlens V-groove with good surface roughness of several nm. The molecular weight and glass transition temperature of PMMA is reduced when it is irradiated with deep X-rays. The microlenses were produced through the effects of volume change, surface tension, and reflow during thermal treatment of irradiated PMMA. Microlenses were produced with diameters ranging from 30 to $1500\mu\textrm{m}$. The surface X-ray mask is also fabricated to realize microlens arrays on PMMA sheet with a large area. The size of the micro V-groove is fabricated in the range of 12~$60\mu\textrm{m}$.

Dry Etch Process Development for TFT-LCD Fabrication Using an Atmospheric Dielectric Barrier Discharge

  • Choi, Shin-Il;Kim, Sang-Gab;Choi, Seung-Ha;Kim, Shi-Yul;Kim, Sang-Soo;Lee, Seung-Hun;Kwon, Ho-Cheol;Kim, Gon-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1272-1275
    • /
    • 2008
  • We present the development of dry etch process for the liquid crystal display (LCD) fabrication using a dielectric barrier discharge (DBD) system at atmospheric pressure. In this experimental work, the dry etch characteristics and the electrical properties of thin film transistor are evaluated by using the scanning electron microscopy and electric probe, and TFT-LCD panel ($300\;mm\;{\times}\;400\;mm$) is manufactured with the application of the amorphous silicon etch step in the 4 mask and 5 mask processes.

  • PDF

Microlens Fabrication by Using Excimer Laser (엑사이머 레이저를 이용한 마이크로렌즈 제작)

  • 김철세;김재도;윤경구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.33-39
    • /
    • 2003
  • A new microlens fabrication technique, the excimer laser lithography is developed. This bases on the pulsed laser irradiation and the transfer of a chromium-on-quartz reticle on to the polymer surface with a proper projection optics system. An excimer laser lithography system with 1/4 and 1/20 demagnification ratios was constructed first, and the photoablation characteristics of the PMMA and Polyimide were experimentally examined using this system. For two different shapes of microlenses, a spherical lens and a cylindrical lens, fabrication techniques were investigated. One for the spherical lens is a combination of the mask pattern projection and fraction effect. The other for the cylindrical lens is a combination of the mask pattern projection and the relative movement of a specimen. The result shows that various shapes of micro optical components can be easily fabricated by the excimer laser lithography.

Electric Circuit Fabrication Technology using Conductive Ink and Direct Printing

  • Jeong, Jae-U;Kim, Yong-Sik;Yun, Gwan-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • For the micro conductive line, memory device fabrication process use many expensive processes such as manufactur-ing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because nano-metal particles contained inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as FPCB, PCB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line on flexible PCB substrate for the next generation electronic circuit using Ag nano-particles contained ink. To improve the line tolerance on flexible PCB, metal lines are fabricated by sequential prinitng method. Sequential printing method has vari-ous merits about fine, thick and high resolution pattern lines without bulge.

  • PDF

Fabrication of TFTs for LCD using 3-Mask Process

  • You, Soon-Sung;Cho, Heung-Lyul;Kwon, Oh-Nam;Nam, Seung-Hee;Chang, Yoon-Gyoung;Kim, Ki-Yong;Cha, Soo-Yeoul;Ahn, Byung-Chul;Chung, In-Jae
    • Journal of Information Display
    • /
    • v.6 no.3
    • /
    • pp.18-21
    • /
    • 2005
  • A new technology for reducing photolithography process from a four step to a three step process in the fabrication of TFT LCD is introduced. The core technology for 3-mask-TFT processes is the lift-off process [1], by which the PAS and PXL layers can be formed simultaneously. A different method of the lift-off process was developed in order to enhance the performance of efficiency with conventional positive and not negative PR which is the generally used in other lift-off process. In addition, the removal capacity of the ITO/PR in lift-off process was evaluated. The evaluation results showed that the new process can be run in conventional TFT production condition. In order to apply this new process in existing TFT process, several tests were conducted to ensure stability of the TFT process. It was found that the outgases from PR on the substrate in ITO sputtering chamber do not raise any problem, and the deposited ITO film beside the PR has conventional ITO qualities. Furthemore, the particles that were produced due to the ITO chips in PR strip bath could be reduced by the existing filtering system of stripper. With the development of total process and design of the structure for TFT using this technology, 3-mask-panels were achieved in TN and IPS modes, which showed the same display performances as those with the conventional 4mask process. The applicability and usefulness of the 3-mask process has already verified in the mass production line and in fact it currently being used for the production of some products.

Mask Modeling of a 3D Non-planar Parent Material for Micro-abrasive Jet Machining (미세입자 분사가공을 위한 3 차원 임의형상 모재용 마스크 모델링)

  • Kim, Ho-Chan;Lee, In-Hwan;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.91-97
    • /
    • 2010
  • Micro-abrasive Jet Machining is one of the new technology which enables micro-scale machining on the surface of high brittle materials. In this technology it is very important to fabricate a mask that prevents excessive abrasives not to machine un-intend surface. Our previous work introduced the micro-stereolithography technology for the mask fabrication. And is good to not only planar material but also for non-planar materials. But the technology requires a 3 dimensional mask CAD model which is perfectly matched with the surface topology of parent material as an input. Therefore there is strong need to develop an automated modeling technology which produce adequate 3D mask CAD model in fast and simple way. This paper introduces a fast and simple mask modeling algorithm which represents geometry of models in voxel. Input of the modeling system is 2D pattern image, 3D CAD model of parent material and machining parameters for Micro-abrasive Jet Machining. And the output is CAD model of 3D mask which reflects machining parameters and geometry of the parent material. Finally the suggested algorithm is implemented as software and verified by some test cases.

Modeling of Silicon Etch in KOH for MEMS Based Energy Harvester Fabrication (MEMS기반 에너지 하베스터 제작을 위한 실리콘 KOH 식각 모형화)

  • Min, Chul-Hong;Gang, Gyeong-Woo;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.176-181
    • /
    • 2012
  • Due to the high etch rate and low fabrication cost, the wet etching of silicon using KOH etchant is widely used in MEMS fabrication area. However, anisotropic etch characteristic obstruct intuitional mask design and compensation structures are required for mask design level. Therefore, the accurate modeling for various types of silicon surface is essential for fabrication of three-dimensional MEMS structure. In this paper, we modeled KOH etch profile for MEMS based energy harvester using fuzzy logic. Modeling results are compared with experimental results and it is applied to design of compensation structure for MEMS based energy harvester. Through Fuzzy inference approaches, developed model showed good agreement with the experimental results with limited etch rate information.

Generation of Lens surface by moving mask lithography (가변 속도 이동식 마스크를 이용한 렌즈 곡면 형성)

  • Lee Joon-Sub;Park Woo-Jae;Song Seok-Ho;Oh Cha-Hwan;Kim Pill-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.508-515
    • /
    • 2005
  • We propose a fabrication method for refractive lens by variable velocity moving mask lithography and slit pattern. Distribution of exposure dose should be controlled for the curved photoresist surface that works as a refractive surface. We analyze theoretically the distribution of exposure dose by change of moving velocity, moving direction of mask and the shape of mask pattern, and confirm for the curved surface experimentally. The lens could have sag height of a few of hundreds ${\mu}m$, by using thick photoresist or Deep RIE process.