• Title/Summary/Keyword: martensitic steel

Search Result 185, Processing Time 0.024 seconds

The Effects of the Structural Changes and Mechanical Properties of the Austenitized and Tempered Martensitic STS 410 Stainless Steel on Its Temper Embrittlement (STS 410 마르텐사이트계 Stainless 강의 템퍼취성과 조직 및 기계적 성질에 관한 연구)

  • S.H., Lee;T.H., Go;W.S., Lee;S.D., Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.303-313
    • /
    • 2022
  • The purpose of this study was to test and analyze the effects of the mechanical properties and structural changes of the austenitized and tempered martensite STS 410 stainless steel containing 11.5~13%Cr and 0.10%C on its temper embrittlement. The STS 410 stainless steel test pieces for each 3 hours at 960℃, 1000℃ and then, tempered them for 2 hours at 300℃, 350℃, 400℃, 450℃, 500℃, 550℃, 600℃, 650℃ and 700℃ known as the intervals vulnerable to temper embrittlement to observe the changes of their structures and mechanical properties. In case autenitizing was insufficient due to lower temperature of thermal treatment for solution, unsolved carbides and ferrites remained in the structure after quenching, which meant that the parts could wear out and corrode to embrittle at the room temperature. Elongation and impact energy changes with Tempering conditions showed minimum results in range of 400~500℃. The decrease in elongation and impact energy at 400~500℃ was the hardening effect of the subgrain due to the precipitation of many M3C or M7C3, M23C6. And STS 410 stainless steel corrosion tested in 10% NaCl solution at 30℃ after tempering treatment. The degree of corrosion sensitization showed increasing tendency with increase of tempering temperature and Cr carbide precipitation were observed in grain boundary.

EFFECT OF HARDNESS CHANGES AND MICROSTRUCTURAL DEGRADATION ON CREEP BEHAVIOR OF A Mod.9Cr-1Mo STEEL

  • PARK K. S.;CHUNG H. S.;LEE K. J.;JUNG Y. G.;KANG C. Y.;ENDO T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.45-52
    • /
    • 2005
  • Interrupted creep tests for investigating the structural degradation during creep were conducted for a Mod.9Cr-1Mo steel in the range of stress from 71 to 167 MPa and temperature from 873 to 923 K. The change of hardness and tempered martensitic lath width was measured in grip and gauge parts of interrupted creep specimens. The lath structure was thermally stable in static conditions. However, it was not stable during creep, and the structural change was enhanced by creep strain. The relation between the change in lath width and creep strain was described quantitatively. The change in Vickers hardness was expressed by a single valued function of creep LCR(life consumption ratio). Based on the empirical relation between strain and lath width, a model was proposed to describe the relation between change in hardness and creep LCR. The comparison of the model with the empirical relation suggests that about 65% of hardness loss is due to the decrease of dislocation density accompanied by the movement of lath boundaries. The role of precipitates on subboundaries was discussed in connection with the abnormal subgrain growth appearing in low stress regime.

Development of Magnetized Ferromagnetic Stainless Steel Acupuncture Needle (강자성(强磁性) 스테인리스강(鋼) 자화침(磁化鍼)의 개발)

  • Hong, Do Hyun
    • Journal of Acupuncture Research
    • /
    • v.31 no.2
    • /
    • pp.21-30
    • /
    • 2014
  • Objectives : Manufacturing and manipulation techniques of acupuncture can be interpreted as an induced electromagnetic viewpoint, as proposed in previous study. Considering from this point of view, the magnetization of needles should be essential to enhance the electromagnetic effects during the behavior of the acupuncture needling. Methods : The current disposable needles are made of non-magnetic stainless steels, so ferromagnetic materials were searched as suitable substitutes. Meanwhile, at the practical view, stainless steels are very available for the several superior properties like as corrosion resistance, strength, etc., magnetic stainless steels were first investigated. Some types of them still preserved the ferromagnetic properties of iron, so trial needles were made with them. And then magnetization of them were followed. Results : Among the hundreds types of stainless steels, martensitic or ferritic ones are ferromagnetic. The needles made with these ferromagnetic wires were magnetized, and polarized by magnetizer, and their magnetic properties were improved. Moreover, in addition to the superiority of the magnetism, the electrical and thermal conductivities of them were even better than those of the current austenitic stainless steels. Conclusions : Through the developmental study based on the electromagnetic viewpoint, the magnetized and polarized acupuncture needles were completed. This means that these needles having improved magnetism can be used to improve the electromagnetic needling effects, and moreover, their superiorities in the electrical and thermal conductivities can also give another benefits in treatments of electrical or warm needling.

MICROSTRUCTURAL EVOLUTION OF SHAPEO-CHARGE LINER AND TARGET MATEREALS DURING BALLISTIC TEST (관통 시험된 성형장약탄 라이너와 타겟 재료에 있어서의 미세조직 변화)

  • Hong, Mun-Hui;Lee, Seong;Roh, Jun-Ung;Baek, Un-Hyueong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.46-46
    • /
    • 2001
  • The microstructure of the 1020 mild steel target in the region ahead of craters, made by colliding against Cu and W-Cu shaped-charge jets. has been investigated in the present work. The region ahead of the crater impacted by the Cu shaped-charge jet reveals grain refinement implying the formation of sub-grains, while that of W-Cu one leads to martensitic transformation indicating that the region was heated up to an austenitic region which was followed by rapid cooling. The pressure of W-Cu shaped-charge jet impacting against the target when calculated is higher than that of Cu one. The microhardness of the region ahead of the crater impacted by the W-Cu shaped-charge jet is also higher than that of the Cu one. The microstructure of W-Cu slug that remains inside of the crater depicts the occurrence of the remarkable elongation of W particles during the liner collapse. The microstructural evolution of the region ahead of the crater is discussed on the basis of the pressure dependency of the ferrite/austenite transformation in the steel.

  • PDF

Processing and Properties of Engine Valve-shaped TiAl-Mn Intermetallics by Reactive Sintering (반응소결법에 의해 엔진밸브 형상으로 제조한 TiAl-Mn 금속간화합물의 특성)

  • 김영진
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.243-251
    • /
    • 1997
  • Engine valve-shaped TiAl-Mn intermetallics containing 43.5 to 47.5at%Al (Mn/Al=0.036) are successively fabricated by reactive sintering the elemental powder mixtures near-net shaped by extrusion and die forging. A duplex structure consisted of lamellar grains and equiaxed $\gamma$ grains is developed for all compositions, and the areal fraction of the lamellar grains(or equiaxed $\gamma$ grains) decreases (or increases) with increasing Al content. As Al content increased, the elongation increases with accompanying decrease in yield strength and ultimate tensile strength at both room temperature and 80$0^{\circ}C$. This indicates that the suitable composition is Ti-45at%Al-1.6at%Mn in considering the balance of ambient and elevated tensile properties. The reactive-sintered Ti-45Al-1.6Mn alloy shows superior oxidation resistance not only to the plasma arc melted one but also to the heat resistance steel STR35(representative exhaust valve head material for automotive engine). The reactive-sintered Ti-45Al-1.6Mn alloy coated with an oxidizing scale exhibits a better wear resistance than induction hardened martensitic steel STR11(representative exhaust valve tip material for automotive engine).

  • PDF

A Study on Mechanical Properties and Microstructure of Local-Hardening Heat-Treated Automotive Panel (국부 경화 열처리된 차체 부품의 기계적 성질과 미세조직에 관한 연구)

  • Lee, Jae Ho;Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.301-308
    • /
    • 2010
  • A steel with chemical composition, 0.22% C, 0.25% Si, 1.26% Mn, 0.22% Cr, 0.04% Ti, 0.0042% B, and a microstructure of ferrite and spheroidized cementite has been press-formed to automotive center pillar followed by local-hardening heat-treatment. Hardness, tensile properties, fractography, microstructure and surface roughness of local-hardening heat-treated automotive center pillar have been examined. The directly heated and quenched area had fully martensitic structure with Vickers hardenss in the range of 500 to 510. The heat affected area close to the directly heated area showed dual-phase structure of ferrite and martensite. The width of the heat-treated and heat-affected areas after the local-hardening heat treatment was ranging from 32 mm to 50 mm. The surface of the local-hardening heat-treated center pillar revealed some temper color as a consequence of the oxidation during the heat treatment, but the surface roughness was not affected by the local-hardening heat treatment.

Effect of Cooling Velocity on the Microstructures and Mechanical Properties of Si, Mn, V added HSLA Steels (Si, Mn, V이 첨가된 비조질강의 미세조직 및 기계적 성질에 미치는 냉각속도의 영향)

  • Park, Yon-Seo;Choi, Chang-Soo;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.5
    • /
    • pp.267-274
    • /
    • 2001
  • Microalloyed steels, which substituted by conventional quenched and tempered steels, have been used in a wide variety of structural and engineering application. The main driving force for preference of MA steels is a cost reduction which can be achieved by an omission of heat treatment. In this study, low carbon martensitic MA steels in 0.18C-0.30(0.60)Si-2.00(1.80)Mn-0.05S-1.5Cr-0.05(0.10)V-0.015Ti(wt%) were investigated to know the effects of cooling method on the mechanical properties and microstructures of Si, Mn, V added microalloyed steel at different reheating temperature. Microstructure of oil quenched steels which were comprised lath martensite, auto-tempered martensite and retained austenite, had more various structure than that of air cooled steel made of mainly bainite. Therefore, oil quenched steels, which had more various microstructure, had better strength-toughness balance compare to air cooled steels. In the impact test, fracture mode of oil quenched steels, which showed good mechanical properties, were dimple, but that of air cooled steels were cleavage.

  • PDF

Behavior of the Residual Stress on the Surfaces of 12Cr Steels Generated by Flame Hardening Process (화염경화 표면처리 공정에 의한 12Cr 강의 잔류응력 거동)

  • 이민구;김광호;김경호;김흥회
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.4
    • /
    • pp.226-233
    • /
    • 2004
  • The residual stresses on the surfaces of low carbon 12Cr steels used as a nuclear steam turbine blade material have been studied by controlling the flame hardening surface treatments. The temperature cycles on the surfaces of 12Cr steel were controlled precisely as a function of both the surface temperature and cooling rate. The final residual stress state generated by flame hardening was dominated by two opposite competitive contributions; one is tensile stress due to phase transformation and the other is compressive stress due to thermal contraction on cooling. The optimum processing temperatures required for the desirable residual stress and hardness were in the range of $850^{\circ}C$ to $960^{\circ}C$ on the basis of the specification of GE power engineering. It was also observed that the high residual tensile stress generated by flame hardening induced the cracks on the surfaces, especially across the prior austenite grain boundaries, and the material failure virtually, which might limit practical use of the surface engineered parts by flame hardening.

Evaluation on Creep Properties of Reduced Activation Ferritic Steel(RAFs) for Nuclear Fusion Reactor (핵융합로용 저방사화 철강재료(RAFs)의 크리프 특성평가)

  • 공유식;윤한기;남승훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.58-63
    • /
    • 2004
  • Reduced Activation Ferritic/Martensitic Steels (RAFs) are leading candidntes for structural materials of a D-T fusion reactor. One of the RAFs, JLF-l (9Cr-2W-V, Ta) has been developed and has shown to have good resistance against high-fluency neutrino irradiation and good phase stability. Recently, in order to clarify the strengthening mechanisms at high temperatures, a new scheme to improve high temperature mechanical properties is desired. Therefore, the test technique development of high temperature creep behaviors for this material is very important. In this paper, the creep properties and creep life prediction, using the Larson-Miler parameter method for JLF-l to be used for fusion reactor materials or other high temperature components, are presented at the elevated temperatures of 50$0^{\circ}C$, 55$0^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and 704$^{\circ}C$. It was confirmed, experimentally and quantitatively, that a creep life predictive equation, at such various high temperatures, is well derived mr the LMP method.

Evaluation of radiation resistance of an austenitic stainless steel with nanosized carbide precipitates using heavy ion irradiation at 200 dpa

  • Ji Ho Shin ;Byeong Seo Kong;Chaewon Jeong;Hyun Joon Eom;Changheui Jang;Lin Shao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.555-565
    • /
    • 2023
  • Despite many advantages as structural materials, austenitic stainless steels (SSs) have been avoided in many next generation nuclear systems due to poor void swelling resistance. In this paper, we report the results of heavy ion irradiation to the recently developed advanced radiation resistant austenitic SS (ARES-6P) with nanosized NbC precipitates. Heavy ion irradiation was performed at high temperatures (500 ℃ and 575 ℃) to the damage level of ~200 displacement per atom (dpa). The measured void swelling of ARES-6P was 2-3%, which was considerably less compared to commercial 316 SS and comparable to ferritic martensitic steels. In addition, increment of hardness measured by nano-indentation was much smaller for ARES-6P compared to 316 SS. Though some nanosized NbC precipitates were dissociated under relatively high dose rate (~5.0 × 10-4 dpa/s), sufficient number of NbC precipitates remained to act as sink sites for the point defects, resulting in such superior radiation resistance.