This paper investigated performance of the Markowitz's portfolio selection model with applications to Korean stock market. We chose Samsung-Group-Funds and KOSPI index for performance comparison with the Markowitz's portfolio selection model. For the most recent one and a half year period between March 2007 and September 2008, KOSPI index almost remained the same with only 0.1% change, Samsung-Group-Funds showed 20.54% return, and Markowitz's model, which is composed of the same 17 Samsung group stocks, achieved 52% return. We performed sensitivity analysis on the duration of financial data and the frequency of portfolio change in order to maximize the return of portfolio. In conclusion, according to our empirical research results with Samsung-Group-Funds, investment by Markowitz's model, which periodically changes portfolio by using nonlinear programming with only financial data, outperformed investment by the fund managers who possess rich experiences on stock trading and actively change portfolio by the minute-by-minute market news and business information.
Journal of Construction Engineering and Project Management
/
제1권3호
/
pp.28-37
/
2011
Domestic construction companies are suffering from financing difficulties in the wake of the economic slump in Korea and abroad. During this economic slump, real estate investment trusts (REITs), facilitators for improving financing and stimulating construction businesses, have increasingly expanded since their introduction in 2001. However, in terms of growth speed and marketing size, Korean REITs are falling behind those of other nations. The purpose of this study is to suggest a method for composing a portfolio using the Markowitz portfolio selection model to stimulate REITs. The main contents are as follows. First, a comparative analysis was conducted of increased REIT profit with the application of the Markowitz model and the average REIT profit rate from July 3, 2007, to July 21, 2008, during the investment analysis periods. The results showed that the total profit rate from the Markowitz model was about 10% higher than the average REIT profit rate. Second, the sensitivity was analyzed according to the portfolio's data-gathering and replacement cycle to measure the optimum cycle and yield. The six-mouth profit data collection period showed about 16% higher profits with the Markowitz model than with the REITs. The two-week portfolio change period resulted in about 11% higher profits with the Markowitz model than with the REITs.
The Markowitz portfolio selection model uses estimators to deduce input parameters. However, the estimation errors of input parameters negatively influence the performance of portfolios. Therefore, this model cannot be reliably applied to real-world investments. To overcome this problem, we suggest an algorithm that can exclude stocks with large estimation error from the portfolio by applying a tracking signal to the Markowitz portfolio selection model. By calculating the tracking signal of each stock, we can monitor whether unexpected departures occur on the outcomes of the forecasts on rate of returns. Thereafter, unreliable stocks are removed. By using this approach, portfolios can comprise relatively reliable stocks that have comparatively small estimation errors. To evaluate the performance of the proposed approach, a 10-year investment experiment was conducted using historical stock returns data from 6 different stock markets around the world. Performance was assessed and compared by the Markowitz portfolio selection model with additional constraints and other benchmarks such as minimum variance portfolio and the index of each stock market. Results showed that a portfolio using the proposed approach exhibited a better Sharpe ratio and rate of return than other benchmarks.
In applying Markowitz's portfolio selection model to the stock market, we developed a comprehensive investment decision-making framework including key inputs for portfolio theory (i.e., individual stocks' expected rate of return and covariance) and minimum required expected return. For estimating the key inputs of our decision-making framework, we utilized an exponentially weighted moving average (EWMA) which places more emphasis on recent data than the conventional simple moving average (SMA). We empirically analyzed the investment results of the decision-making framework with the same 15 stocks in Samsung Group Funds found in the Korean stock market between 2007 and 2011. This five-year investment horizon is marked by global financial crises including the U.S. subprime mortgage crisis, the collapse of Lehman Brothers, and the European sovereign-debt crisis. We measure portfolio performance in terms of rate of return, standard deviation of returns, and Sharpe ratio. Results are compared with the following benchmarks : 1) KOSPI, 2) Samsung Group Funds, 3) Talmudic portfolio based on the na$\ddot{i}$ve 1/N rule, and 4) Markowitz's model with SMA. We performed sensitivity analyses on all the input parameters that are necessary for designing an investment decision-making framework : smoothing constant for EWMA, minimum required expected return for the portfolio, and portfolio rebalancing period. In conclusion, appropriate use of the comprehensive investment decision-making framework based on the Markowitz's model integrated with EWMA proves to achieve outstanding performance compared to the benchmarks.
본 논문은 마코위츠의 포트폴리오 선정 이론을 한국 주식 시장에 실제 적용할 경우 투자 성과를 평가해 본 실증적 연구이다. 이를 위해서 대중적으로 인기가 있었던 삼성그룹주펀드 5종 및 KOSPI지수 변화율을 마코위츠의 모형과 비교 분석하였다. 2007년 3월부터 2008년 9월까지 최근 1년 6개월의 기간에 대하여, KOSPI 지수는 0.1%로 거의 변화를 보이지 않은 반면, 삼성그룹주펀드 5종의 평균수익률은 20.54%였고, 삼성그룹주펀드를 구성하는 동일한 17개 종목으로 마코위츠의 모형에 따라 투자한 방식은 52%의 수익률을 올렸다. 수익률을 극대화하기 위하여 데이터 수집 기간 및 포트폴리오 교체 주기에 대하여 민감도 분석을 수행하였다. 결론적으로, 투자자 개인의 주관이나 감정에 의한 판단을 완전히 배제하고 객관적 데이터에 의하여 포트폴리오를 수리적으로 변경하는 마코위츠의 모형에 의한 투자 방식이, 상대적으로 우월한 시장 정보를 가지고 주관적 판단에 의해 능동적으로 포트폴리오를 변경하는 시중 펀드매니저의 운영 성과에 비해 월등하였음을 본 연구에서는 삼성그룹주펀드의 실증적 연구를 통하여 보이고 있다.
Markowitz's portfolio selection model is used to construct an optimal portfolio which has minimum variance, while satisfying a minimum required expected return. The model uses estimators based on analysis of historical data to estimate the returns, standard deviations, and correlation coefficients of individual stocks being considered for investment. However, due to the inaccuracies involved in estimations, the true optimality of a portfolio constructed using the model is questionable. To investigate the effect of estimation inaccuracy on actual portfolio performance, we study the changes in a portfolio's realized return and standard deviation as the accuracy of the estimations for each stock's return, standard deviation, and correlation coefficient is increased. Furthermore, we empirically analyze the portfolio's performance by comparing it with the performance of active mutual funds that are being traded in the Korean stock market and the KOSPI benchmark index, in terms of portfolio returns, standard deviations of returns, and Sharpe ratios. Our results suggest that, among the three input parameters, the accuracy of the estimated returns of individual stocks has the largest effect on performance, while the accuracy of the estimates of the standard deviation of each stock's returns and the correlation coefficient between different stocks have smaller effects. In addition, it is shown that even a small increase in the accuracy of the estimated return of individual stocks improves the portfolio's performance substantially, suggesting that Markowitz's model can be more effectively applied in real-life investments with just an incremental effort to increase estimation accuracy.
본 연구에서는 KOSPI와 KOSDAQ에 상장된 건설 기업을 대상으로 효율적인 포트폴리오를 구성방안을 제시한다. 이를 위해 한국거래소(KRX)에서 구분하는 건설 업종을 DEA(Data Envelopment Analysis) 기법을 이용하여 기업효율성 분석을 실시하고 효율성이 우수한 기업들을 대상으로 마코위츠 모형을 통해 포트폴리오를 구성한다. 본 연구에서 제안한 포트폴리오 구성 방안의 성능 실험을 위해 KOSPI와 KOSDAQ에 상장된 53개의 기업의 주식을 대상으로 5년 (2007~2011) 동안 매해 포트폴리오를 구성하였고 각각의 포트폴리오 수익률을 경영 효율성을 고려하지 않고 구성한 포트폴리오 및 벤치마크 수익률과 비교 분석을 통해 그 우수성을 입증하였다.
국내 외 경기 침체의 영향으로 국내 건설업체들은 자금조달의 어려움을 겪고 있다. 이러한 경기 침체기에 자금의 유동화와 건설경기의 활성화를 촉진할 수 있는 리츠 제도가 2001년에 도입되어 점차 확대되고 있지만, 비슷한 시기에 도입한 다른 나라에 비해 성장속도 및 시장규모가 작은 편이다. 본 연구에서는 리츠의 활성화를 위하여 보다 높은 수익률 확보를 위한 포트폴리오 구성 방법으로, 마코위츠 포트폴리오 선정 모형을 적용한 리츠 투자 포트폴리오 구성 방법에 대해 제안하고자 한다. 주요 내용은 다음과 같다. 첫째, 2007년 7월 3일부터 2008년 7월 21일까지의 투자분석기간 동안 마코위츠 모형을 적용한 리츠의 투자결과와 비교대상 리츠들의 평균 수익률을 비교하여 수익률 향상정도를 분석하였다. 그 결과 마코위츠 모형을 적용한 수익률이 비교대상 리츠들의 평균 수익률보다 약 10% 높게 나타났다. 둘째, 기존 수익률의 자료 수집기간과 포트폴리오 교체주기에 대한 민감도 분석을 하여, 최적의 수익률을 나타낼 수 있는 자료 수집기간과 포트폴리오 교체주기를 도출하였다. 수익률 자료 수집기간이 6개월 일 때 비교대상 리츠들의 평균 수익률보다 마코위츠 모형을 적용한 수익률이 약 16% 높게 나타났으며, 포트폴리오 교체주기를 2주 간격으로 설정하였을 때는 약 11% 높게 나타났다.
In this study we suggested two optimization models to determine conversion weight of convertible bonds. The problem of this study is same as that of Park and Shim [1]. But this study used Value-at-Risk (VaR) for risk measurement instead of CVaR, Conditional-Value-at-Risk. In comparison with conventional Markowitz portfolio models, which use the variance of return, our models used VaR. In 1996, Basel Committee on Banking Supervision recommended VaR for portfolio risk measurement. But there are difficulties in solving optimization models including VaR. Benati and Rizzi [5] proved NP-hardness of general portfolio optimization problems including VaR. We adopted their approach. But we developed efficient algorithms with time complexity O(nlogn) or less for our models. We applied examples of our models to the convertible bond issued by a semiconductor company Hynix.
This paper proposes an efficient portfolio management methodology named sSPPM with consideration of risk and required return. sSPPM employs Markowitz's portfolio model to select securities and adopts ($s$, $S$) policy that is a well-known technique in the inventory control area to revise the current portfolio. Computational experiments using virtual stock prices generated by monte carlo simulation method as well as real stock ones of KOSPI for recent 4 years are conducted to show the excellence of the portfolio management under ($s$, $S$) policy framework. The result shows that sSPPM is remarkably superior to both 6 or 12 months based periodic portfolio revision method and market (KOSPI index).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.