• Title/Summary/Keyword: markov random fields

Search Result 24, Processing Time 0.027 seconds

Bayesian Texture Segmentation Using Multi-layer Perceptron and Markov Random Field Model (다층 퍼셉트론과 마코프 랜덤 필드 모델을 이용한 베이지안 결 분할)

  • Kim, Tae-Hyung;Eom, Il-Kyu;Kim, Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.40-48
    • /
    • 2007
  • This paper presents a novel texture segmentation method using multilayer perceptron (MLP) networks and Markov random fields in multiscale Bayesian framework. Multiscale wavelet coefficients are used as input for the neural networks. The output of the neural network is modeled as a posterior probability. Texture classification at each scale is performed by the posterior probabilities from MLP networks and MAP (maximum a posterior) classification. Then, in order to obtain the more improved segmentation result at the finest scale, our proposed method fuses the multiscale MAP classifications sequentially from coarse to fine scales. This process is done by computing the MAP classification given the classification at one scale and a priori knowledge regarding contextual information which is extracted from the adjacent coarser scale classification. In this fusion process, the MRF (Markov random field) prior distribution and Gibbs sampler are used, where the MRF model serves as the smoothness constraint and the Gibbs sampler acts as the MAP classifier. The proposed segmentation method shows better performance than texture segmentation using the HMT (Hidden Markov trees) model and HMTseg.

Moving Object Segmentation and Tracking Using Markov Random Fields (Markov Random Fields를 이용한 움직이는 객체 추출 및 추적)

  • 장세일;황선규;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2100-2103
    • /
    • 2003
  • 기존의 객체 추출 및 추적 기법은 외형 변화가 없는 객체를 대상으로 하거나 배경이 고정된 영상만을 고려하였다 본 논문에서는 영역의 색상과 움직임 정보, 그리고 인접한 영역의 상관 관계를 고려한 Markov Random Field (MRF) 모델을 제안한다. MRF 모델은 영상의 시간적 공간적 상관성을 기반으로 최적의 레이블 셋을 계산함으로써 보다 정확하게 객체를 추출 및 추적할 수 있다. 또한, 블록 기반 움직임 추출 알고리즘인 Diamond Search (DS)를 분할된 영역에 적용하여 빠르게 영역의 움직임과 전역 움직임을 추정하였다. 실험 결과 제안한 방법이 객체의 외형 변화와 카메라 움직임이 있는 동영상에서 빠른 속도로 정확하게 객체를 추출 및 추적하는 것을 확인하였다.

  • PDF

An Edge-Based Algorithm for Discontinuity Adaptive Image Smoothing (에지기반의 불연속 경계적응 영상 평활화 알고리즘)

  • 강동중;권인소
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.273-273
    • /
    • 2000
  • We present a new scheme to increase the performance of edge-preserving image smoothing from the parameter tuning of a Markov random field (MRF) function. The method is based on automatic control of the image smoothing-strength in MRF model ing in which an introduced parameter function is based on control of enforcing power of a discontinuity-adaptive Markov function and edge magnitude resulted from discontinuities of image intensity. Without any binary decision for the edge magnitude, adaptive control of the enforcing power with the full edge magnitude could improve the performance of discontinuity-preserving image smoothing.

  • PDF

Improving Clustering-Based Background Modeling Techniques Using Markov Random Fields (클러스터링과 마르코프 랜덤 필드를 이용한 배경 모델링 기법 제안)

  • Hahn, Hee-Il;Park, Soo-Bin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.157-165
    • /
    • 2011
  • It is challenging to detect foreground objects when background includes an illumination variation, shadow or structural variation due to its motion. Basically pixel-based background models including codebook-based modeling suffer from statistical randomness of each pixel. This paper proposes an algorithm that incorporates Markov random field model into pixel-based background modeling to achieve more accurate foreground detection. Under the assumptions the distance between the pixel on the input imaging and the corresponding background model and the difference between the scene estimates of the spatio-temporally neighboring pixels are exponentially distributed, a recursive approach for estimating the MRF regularizing parameters is proposed. The proposed method alternates between estimating the parameters with the intermediate foreground detection and estimating the foreground detection with the estimated parameters, after computing it with random initial parameters. Extensive experiment is conducted with several videos recorded both indoors and outdoors to compare the proposed method with the standard codebook-based algorithm.

Contextual Modeling and Generation of Texture Observed in Single and Multi-channel Images

  • Jung, Myung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.4
    • /
    • pp.335-344
    • /
    • 2001
  • Texture is extensively studied in a variety of image processing applications such as image segmentation and classification because it is an important property to perceive regions and surfaces. This paper focused on the analysis and synthesis of textured single and multiband images using Markov Random Field model considering the existent spatial correlation. Especially, for multiband images, the cross-channel correlation existing between bands as well as the spatial correlation within band should be considered in the model. Although a local interaction is assumed between the specified neighboring pixels in MRF models, during the maximization process, short-term correlations among neighboring pixels develop into long-term correlations. This result in exhibiting phase transition. In this research, the role of temperature to obtain the most probable state during the sampling procedure in discrete Markov Random Fields and the stopping rule were also studied.

The Shape and Movement Extraction of the Moving Object in Image Sequences Using 3-D Markov Random Fields (3-D MRF를 이용한 동영상 내의 이동 물체의 형상과 움직임 추출)

  • 송효섭;양윤모
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.553-555
    • /
    • 2001
  • Markov Random Fields(MRF) 모델은 영상 분할 및 복원 등에 주로 사용되는 확률적 영상모델이다. 본 논문에서는 MRF 모델을 3차원으로 확장하여 분할을 위한 선 필드 모델(Line Field Model)과 움직임 검출을 위한 움직임 필드 모델(Motion Field Model)을 도입하여 동영상 내에서 움직이는 물체의 형상과 움직임을 추정한다. 제안된 방법을 이용하여 한국어 수화 동작에서 손의 형상과 이동방향을 검출하였다. 그 결과 optical flow를 사용하는 방법에 비해서 이동 방향이 왜곡되는 것을 방지하여 보다 정확한 이동 방향을 검출할 수 있었다. 또한 영상 추출의 경우에 있어서도 형상의 윤곽면과 내부가 하나의 라벨(label)로 묶이기 때문에 보다 깨끗한 영상을 추출할 수 있었다.

  • PDF

Object Tracking in HEVC Bitstreams (HEVC 스트림 상에서의 객체 추적 방법)

  • Park, Dongmin;Lee, Dongkyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.449-463
    • /
    • 2015
  • Video object tracking is important for variety of applications, such as security, video indexing and retrieval, video surveillance, communication, and compression. This paper proposes an object tracking method in HEVC bitstreams. Without pixel reconstruction, motion vector (MV) and size of prediction unit in the bitstream are employed in an Spatio-Temporal Markov Random Fields (ST-MRF) model which represents the spatial and temporal aspects of the object's motion. Coefficient-based object shape adjustment is proposed to solve the over-segmentation and the error propagation problems caused in other methods. In the experimental results, the proposed method provides on average precision of 86.4%, recall of 79.8% and F-measure of 81.1%. The proposed method achieves an F-measure improvement of up to 9% for over-segmented results in the other method even though it provides only average F-measure improvement of 0.2% with respect to the other method. The total processing time is 5.4ms per frame, allowing the algorithm to be applied in real-time applications.

Bayesian updated correlation length of spatial concrete properties using limited data

  • Criel, Pieterjan;Caspeele, Robby;Taerwe, Luc
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.659-677
    • /
    • 2014
  • A Bayesian response surface updating procedure is applied in order to update the parameters of the covariance function of a random field for concrete properties based on a limited number of available measurements. Formulas as well as a numerical algorithm are presented in order to update the parameters of response surfaces using Markov Chain Monte Carlo simulations. The parameters of the covariance function are often based on some kind of expert judgment due the lack of sufficient measurement data. However, a Bayesian updating technique enables to estimate the parameters of the covariance function more rigorously and with less ambiguity. Prior information can be incorporated in the form of vague or informative priors. The proposed estimation procedure is evaluated through numerical simulations and compared to the commonly used least square method.

SOME SMALL DEVIATION THEOREMS FOR ARBITRARY RANDOM FIELDS WITH RESPECT TO BINOMIAL DISTRIBUTIONS INDEXED BY AN INFINITE TREE ON GENERALIZED RANDOM SELECTION SYSTEMS

  • LI, FANG;WANG, KANGKANG
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.517-530
    • /
    • 2015
  • In this paper, we establish a class of strong limit theorems, represented by inequalities, for the arbitrary random field with respect to the product binomial distributions indexed by the infinite tree on the generalized random selection system by constructing the consistent distri-bution and a nonnegative martingale with pure analytical methods. As corollaries, some limit properties for the Markov chain field with respect to the binomial distributions indexed by the infinite tree on the generalized random selection system are studied.

Stereo Matching using Belief Propagation with Line Grouping (신뢰확산 알고리듬을 이용한 선 그룹화 기반 스테레오 정합)

  • Kim Bong-Gyum;Eem Jae-Kwon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.1-6
    • /
    • 2005
  • In the Markov network which models disparity map with the Markov Random Fields(MRF), the belief propagation algorithm is operated by message passing between nodes corresponding to each pixel. The initial message value is converged by iterations of the algorithm and the algorithm requires many iterations to get converged messages. In this paper, we simplify the algorithm by regarding the objects in the disparity map as combinations of lines with same message valued nodes to reduce iterations of the algorithm.