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Abstract : Texture is extensively studied in a variety of image processing applications such as image

segmentation and classification because it is an important property to perceive regions and surfaces. This

paper focused on the analysis and synthesis of textured single and multiband images using Markov

Random Field model considering the existent spatial correlation. Especially, for multiband images, the

cross-channel correlation existing between bands as well as the spatial correlation within band should be

considered in the model. Although a local interaction is assumed between the specified neighboring pixels

in MRF models, during the maximization process, short-term correlations among neighboring pixels

develop into long-term correlations. This result in exhibiting phase transition. In this research, the role of

temperature to obtain the most probable state during the sampling procedure in discrete Markov Random

Fields and the stopping rule were also studied.
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1. Introduction

Texture can be considered to be as stochastic,
possibly periodic, two-dimensional image field
and gives inherent features and information on
orientation of an object. With this reason, texture
analysis and synthesis have been extensively
studied and utilized for a variety of image
processing applications such as image
segmentation and classification in remote sensing,
biomedical image analysis, and automatic
detection of surface defects. In many researches,

statistical approaches has been utilized and

Received 29 Octobet 2001 ; Accepted 25 November 2001.

resulted in development of many practical
algorithms for texture analysis. Among them,
random fields have been successfully used to
sample and synthesize textures during several
decades.

Random field is a joint distribution of pixel
intensities that imposes statistical dependence in a
spatially meaningful way. Markov random field
(MRF) is a very natural stochastic model of texture
that can extend local information and assumption
into a global model. It has been consequently
utilized in many applications such as problems in
texture modeling and classification (Cross and
Jain, 1983; Solberg, 1999) and research in
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segmentation (Derin and Elliot, 1987, and Dubes
and Jain, 1989), permitting the introduction of
spatial context.

This paper focused on modeling and generating
single and multiband textured image using both
discrete and continuous MRF. MRF models priori
beliefs about the textural spatial continuity and
maximizes the resulting posterior distribution in a
Bayesian framework making analysis
mathematically tractable. Texture analysis of the
multiband imagery acquired over ranges of
frequency are utilized in many applications such
as classification, segmentation and restoration of
remote sensing data and color imagery. For
modeling and generating textured multichannel
images, Gaussian Markov Random Field (GMRF)
is utilized, which is a special case of MRF where
pixel values have jointly Gaussian distributions.

A variety of relaxation-type algorithms have
been developed based on a Monte Carlo
computational theory to obtain the most probable
state such as an annealing algorithm. In MRF
models, each pixel is assumed to have a local
interaction with the specified neighbors that is
independent of the location in the image.
However, during the maximization process, short-
term correlations among neighboring pixels
develop into long-term correlations, exhibiting
phase transition [Geman and Geman, 1984}; that
is, as parameter values increase past critical
values, abrupt changes in qualitative behavior
occur. Thus, site variables lose their asymptotic
independence, which leads distortion and limits
statistical inference.

The temperature is utilized as an annealing
parameter to obtain the most probable state
avoiding the phase transition. The process is
terminated when the pattern has stopped

changing after some number of iterations. The

proper stopping rule needs to be defined for the
number of iterations required to stop the
algorithm. In this study, the effect of temperature
was also investigated.

This paper is organized as follows: Section II
describes the contextual models for texture. The
phase transition in MRF and the stopping rule of
the annealing process for the most probable state
is explored in Section III. Section IV includes the
evaluation of the proposed method and some

results. Finally, Section V has some conclusions

2. Contextual Modeling for Texture

1) Utilization of Discrete Markov Random
Field

A random field model is a specification of a
probability measure for a particular class of
random variables such as those representing
intensities or depth values of pixels in an image.
All images are defined on an Nj X Nj rectangular

lattice,
L={,j);1 SiSN,1£j<N2).

A proposed random field X={X;} defined on L
has a Gibbs Distribution (GRF) with the joint

distribution of the following form,

P(x=w)= %e‘”“")”, (1)

where U(w)= 2V{@),which is called energy

ale
function, and Z=Ze"u(w) is simply a normalizing
constant. The clique function, V@), associated
with each clique depends only on the values at
sites in clique ¢ and represents contributions to the
total energy: for single clique function, V(@) = if
pixel value in clique ¢ is equal to k, and for

pairwise clique function, V(@) =h - Sy, where h =

-336-



Contextual Modeling and Generarion of Texture Observed in Single and Mulfi-channel Images

-1 if all pixel values in clique c are equal, h=1 if
not, and dir means four types of direction between
pixels (NE, SW, NE(SW), NW(SE)). Paramters,
and f's, control the percentage of each pixel value
and clustering of pixels in each direction,
respectively. T, temperature, is utilized as an
annealing parameter.

Since the partition function Z is practically
intractable, standard statistical procedures can't be
employed and relaxation-type algorithms are
utilized to eliminate the need for computing the

partition function.

2) Utilization of Continuous Markov
Random Field

Since multispectral data contain interchannel
correlation, both the cross-channel correlation
existing between frequency bands and statistical
dependence between neighboring pixels should
be considered in the model.

In the GMRF model for multichannel images,
the intensity at each pixel is represented as a linear
combination of all the neighboring intensities in
the multiple channel and additive correlated
noise. A Gaussian Markov model defined for p

multiple channels can be described:

7(s) = Z@ Z(s+7) + e(s) 2)

reN,
where z(s) and Z(s+r) representing a pixel vector
at location s and its spatially meaningful

neighboring vector, respectively,
2(s) = (21(5). 22(5), ++-, p(s))"

Z(s+r) = (2y(s+7), 2a(s47), =+, L(s+1)

and @, is the parameter set representing the
statistical dependence of a pixel value on those
values in its neighboring pixels within band and
between bands. The noise vector e(s) is Gaussian

with zero mean and covariance matrix % and its

correlation structure is defined as follows:

> s=r
E(e(s)e(r) ={ O, L (s-rEN; 3)
0 otherwise

where N, is the symmetric neighbor set
considering both the spatial interaction within a
band and the interaction between bands.

Since the maximum likelihood estimates to
maximize the log-likelihood function, P(z! ©), Z) is
computationally difficult, herein, least square
estimates obtained by maximizing the
pseudolikelihood are utilized as computationally
efficient estimation scheme in the following
(Chellapa, 1985).

1
L= H (Sﬂ.;lzl)l/z) exXp {_‘2_ (Z(s)v

sES,

Z@z(s+r) Ty (a(s)- 2O a(s+r) } @)
reNg

where §; is the interior set of S such that S; = §-Sg
where Sp is the boundary set in the outer block of
the image.

3) Sampling of MRF

Textures with the specified parameters are
generated using sampling method. Sampling is
the process of generating a realization of a
random field, given a model whose parameters
have been specified or estimated. For it,
relaxation-type algorithm are utilized which
simulates a Markov chain through an iterative
procedure that readjusts the gray levels at pixel
location during each iteration (Geman and
Geman, 1984): a single pixel location is selected at
random and using the conditional distribution
that describes the Markov chain, P(z(s) | z(s+r),
r&N,), the new gray level at that location is

selected dependent only upon the gray levels of
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the pixels in its local neighborhood. The
sequential algorithm terminates after a given
number of iterations.

There have been various constructions of
Markov chains that possess a Gibbs invariant
distribution and whose common characteristic is
that their transition probabilities depend only on
the ratio of the Gibbs probabilities. In GMRF, the
continuous Gaussian distribution is utilized as the
probability function. Actually, it takes a lot of
iteration before stable texture is obtained. GMRF
can also be generated by the efficient scheme that
uses 2D Fourier transforms and doesn’t need
iteration (Picard et al., 1991).

3. Temperature Effect and Stopping Rule

In sampling using simulated annealing,
theoretically, convergence of the process is
assured if Niter is large enough when the initial
state is chosen randomly. However, the tendency
of sampling algorithms to produce uni-color
images has been noted in the statistical literature.
Unfortunately, experiments have shown that
stopping the algorithm too soon may lead to a
misleading realization which does not match a
MRF with given parameters. Therefore, the
number of raster scans, Ny, is an important
parameter.

Markov random fields exhibit phase transition
(Picard, et al., 1991). Short-term correlations
among neighboring pixels develop into long-term
correlations, which leads distortion. The subset of
the parameter space that prevents a discrete Gibbs
random field model from experiencing phase
transition is unknown. This is one of the difficult
problems in defining models. When phase

transition occurs, as an alternative, it is suggested

that the parameter Ny, be selected based on
visual interpretation, estimated parameters and
proportion of each class for the proper stopping
rule.

T is adapted to avoid phase transition and
isolate the most probable state (Geman and
Geman, 1984) by gradually reducing it according

to some cooling algorithm. Typically,

T(k)= 1<k<K (5)

where k is the iteration number and T(k) is the
temperature during the kth iteration. The number
of iterations performed at each temperature T(k)
for the pattern to equilibrate is k. Since the
pixels were visited in a raster scan, the total
number of raster scans during the synthesis is K -
Kinner. The scale factor ¢ controls the annealing
progress and is usually selected in (0,10).

The process is terminated when the pattern has
stopped changing after some number of iterations.
The stopping rule needs to be defined properly for
the number of iterations required to stop the
algorithm. In this study, both the number of pixels
swapping and the similarity between two

successive patterns are considered. For this,

I3
N swapping /M <¢€
(6)

|
INH swapping = N’swappingl/M <&
where Ntsuy,wmx is the average number of
swapping at the temperature t and M is the total
number of pixels in the image. The difference
between estimated parameters of the samples and

the desired parameters is also checked.

4. Experiments

In this section, models for texture are tested
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visually and numerically and temperature effect
and phase transition in sampling were also
explored. For sampling, the Gibbs Sampler is
utilized which generates realization by site-
replacement algorithms. In the case that a
histogram constraint is reasonably assumed, the
Metropolis exchange algorithm is a good choice
since each class occupies a certain percentage in
the image at all times (Dubes and Jain, 1989).
Some examples of texture realizations
generated using the Gibbs distribution are
presented in Fig. 1, where the response of the
model to variation in parametric information such
as orientation is demonstrated. All are 128x128 in
size with a; = 0 when the values of the 5's used in
each simulation are specified. The parameters of a
specific realization of a Gibbs Random Field
(GRM) are estimated using the Least Square Error

Method (LSQR) which uses the histogram
technique (Derin and Elliot, 1987). Several
examples of the parameters estimated are
presented in Fig. 2. For this, 1) generate
realizations of Gibbs distribution with specific
values of parameters ((a) and (c)) in Table 1, 2)
estimate parameters from a given realization and
compare them to the specified values in Table 1,
and then 3) generate realizations with the
estimated values of parameter and visually
compare them to the original realizations ((b) and
(d)). Possible lack of convergence in the realization
algorithm may be one cause and the lack of
sufficient data can be another factor for deviation
in the estimated values because image size
128x128 may be small for LSQR technique.

Here, sampling starts with a randomly chosen

initial pattern since the initial state doesn’t affect

(d) Three gray level with

,B/,(,m‘ =-12,VI /3/1,,,.,‘ =-1.0,V; /[))Imr,l =03, I[));,(,,:Q =05, /3;,,,,-3 =07
Beeri= 12,1 Brori = 1.0, Y, Breri =03, Brers =05, Bz =0.7
Brei=-12,¥1 Prei=10.Y; Bren =03, Bre2 =025, Pres=07

Poi=-1.2, %1 DB = 1.0, V; B =0.3, B2 =05, B3 =07

Fig. 1. Some examples of 128x128 texture realizations from discrete MRF model.

(d)

Fig. 2. Images generated with specified ((a), (c)) and estimated parameters ({b), (d))
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Table 1. Specified and estimated parameters for Fig. 2

Figure Description Size class Bror ’ Drer Dre ’ D
(a) specified 128x128 all classes 04 | 04 03 1 06
(b) estimated 128x128 class 1 0.44 0.34 -0.3 0.58

class 2 043 0.24 -0.28 0.58
class 3 042 (.40 \ -0.32 0.57
class 4 0.32 0.32 -0.32 ; 0.57
(c) specified 128x128 all classcs 0.7 -0.7 -0.7 -0.7
(d) ¢ estimated 128x128 class 1 0.77 -0.38 -0.37 : -0.46
class 2 0.67 -0.39 -0.38 -042
class 3 0.81 0.02 | -0.81 041

the convergence. Convergence of the algorithm is
assured if the number of iterations, Ny, is large
enough, although it is a critical parameter. Fig. 3
illustrates the effect of Njy,, in sampling and shows
phase transition for various iteration numbers.
Terminating the algorithm too soon result in
misleading realizations.

Fig. 4 shows the pattern formation according to
the different ki,..r executed at each temperature.
Even when it approximates a sample of the Gibbs
distribution at a given temperature, image
continues to change as T is reduced. At high

temperatures, since all gray levels are equally

Nier=: C Np=1000

Fig. 3. Phase transition example during sampling process:128x128 4-valued image with ¢, =0, ;= 0.3, V;.

likely at a given pixel, a random-looking pattern is
obtained, and as the temperature is lowered, it
tends to be a more regulated pattern. Here, it is
noted that if a large value for kinner is selected,
the image makes many changes quickly, is
trapped on the local minimum at the given
temperature, and thus doesn’t realize the full
advantage of annealing.

The process is terminated when the pattern has
stopped changing after some number of iterations.
For stopping rule, the swapping number per
iteration was considered with the similarity

between two successive patterns as described in

~340-



Confextual Modeling and Generation of Texture Observed in Single and Multi-channel Images

- Kinne=20

v Ki/um:zoo

Fig. 4. Effect of the numbers of inner 100ps, Kinqer oN pattern formation: 128x128 image with o;=0, Bij=07.;

Eq. (6). The Less pixels swap, the similar the
successive patterns are. Fig. 5 shows the bebavior
of percentage of pixels swapped at every iteration
obtained by the simulation of images with f; =
0.7, ¥i, j using the Gibbs sampler.

As seen in the experimental results,

temperature is to be adapted with a simulated

90 -

Percentage of the Pixel Exchange

0 50 100 150 200 250
Jteration Number

Fig. 5. Evolution of exchange percentage for Gibbs Samplet.

annealing schedule to obtain the pattern that
globally minimize the Gibbs energy, since at a
given temperature, the patterns that are most
likely to be sampled are the ones that locally
minimize the Gibbs energy. To avoid phase
transition above which all patterns generated will
be visually similar and get the most probable state
of a realization, the proper iteration number needs
to be selected during annealing schedule.

Next, some multiband textured images were
generated using GMRF model considering within-
channel spatial correlationas well as interchannel
correlation. First, in Fig. 6, image (a) and (¢) are
taken from remotely sensed data (TM data) as
examples of continuous random fields. Then, the
Least Square Estimates of GMRF model for these
real samples were obtained by maximizing the
pseudolikelihood as described in section 2 and the

estimated values are represented in Table 2. For
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(a) (b)

the sake of visual comparison with the original
realizations, the corresponding realizations were
generated in Fig 6. (b) and (d), respectively. Then,
the parameters were reestimated from these
generated realizations and compared with the
the

performance of the algorithm for generating the

original values in Table 2. Herein,

© ()
Fig. 8. Images generated with specified ((a), (c)) and estimated parameters ((b), (d)).

textured mutiband images can be evaluated
visually as well as by comparison of the estimated
parameters with the original parameters.

A first order neighborhood model is utilized in
image (a), while a second neighborhood model is
employed in image (c) where a diagonal effect is

shown. It is also recognized that the image (c) has

Table 2. Specified and estimated parameters for Fig. 6.

(a) MH=(3374, 4895 2063) (b) M=( 3318, 4828, 20.14)
1450 0.630 0272 ;1453 0532 0248
X= ( 0.630 3406 0741 Z=| 0532 3073 0676
V0274 0741  0.780 0248  0.676 0.888
0240 0026 -0.007 0212 0019 -0.007:
@1:( 0.034 0279 0032 ) @lz( 0.024 0227 0.031
-0.006 0112 0289 0035 0.160 0354
0.157  0.046 -0.001 0.157  0.046 -0.001
@2—‘:( 0.028  0.141 0007 @3:( 0028 0.14]  0.007 )
-0.017  -0.002  0.156 -0.017  -0.002 0.156
() H=(106.66, 4539, 90.19) (d) H=(105.89, 44.65, 89.50)
3.608 0540 0.009 3378 0394 0.028
X= ( 0540 0900 0.023 ) X= ( 0394 1032 0.023 )
0.009 0023 2356 0028 0023 2235
0428  0.037 -0.030 0410 0039 -0.019),
@‘:( 0040 0267 0016 ) ( 0.08 0271 -0.020 )
-0.023  -0.003 0071 -0.036  -0.006 0062
;0227 0012 0.020 0236 -0.020 0.037
@2=[ -0.065 0053 0074 ) @7—( -0.137 0045 0.081 )
0.050 0039 0.0%4 v 0059 0.053  0.09
-0.169  -0.030 -0.003 -0.172 -0.021 0.019
@3:( -0.006 0020 0032 ) @g—( 0013 0.029 0 018 )
0022 0023 0057 0037 0028
0021 0004 -0017 0022 -0.005 -O 021
@4:( 0025 0061 0.056 J @4—( 0050  0.098 0.041 )
-0.023 0.087 -0023 0031 0083

0.021
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the northwestern directional pattern and, as it can
be expected, it has a negative parameter in the
northeast direction, which implies that its effect is
suppressed. Each original sample and its
corresponding synthesized realization are visually
close and have similar characteristics as seen in
Fig. 6. Also, the estimated values from the original
realizations are numerically close to the specified

values as shown in Table 2.

5. Conclusions

Even though texture is difficult to define, it is an
important characteristic to perceive regions and
surfaces. Texture analysis is successfully utilized
in several applications such as segmentation and
classification tasks in remote sensing and medical
image analysis. For example, texture of forest,
agricultural fields, lakes, and other land cover
types in Landsat images can be identified in
segmentation and classification tasks. Random
field models, especially MRF models, have been
usefully employed in texture modeling and
sampling.

Since MRF is practically difficult to compute the
probabilities of the joint distribution, relaxation-
type algorithms are utilized instead of standard
statistical procedures. Some subset of the
parameter space causes phase transition in MRF
that abrupt changes occur qualitatively and
consequently leads to realizations dominated by
one or two pixel values. Non-neighboring pixels
lose the independency assumed in the MRF since
local correlations grow during the relaxation type
of algorithms. When phase transition occurs, as an
alternative, iteration number is to be properly
selected in sampling. which is based on visual

interpretation, estimated parameters, the image

size, and so on. For bigger images, a large number
of iterations are required to obtain a stable texture.

Texture observed in mutichannel images such
as remote sensing is usually related to the cross-
channel correlation existing between bands as
well as the spatial correlation within band, which
should be taken into account in the model for it.
The realizations shown in Section IV support that
the variation in multispectral textured images is
represented well using the GRMF model
considering the spatial dependence between

neighboring pixels.
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