• Title/Summary/Keyword: marker tracking

Search Result 116, Processing Time 0.022 seconds

Measurement and Algorithm Calculation of Maxillary Positioning Change by Use of an Optoelectronic Tracking System Marker in Orthognathic Surgery (악교정수술에서 광전자 포인트 마커를 이용한 상악골 위치 변화의 계측 및 계산 방법 연구)

  • Park, Jong-Woong;Kim, Soung-Min;Eo, Mi-Young;Park, Jung-Min;Myoung, Hoon;Lee, Jong-Ho;Kim, Myung-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.3
    • /
    • pp.233-240
    • /
    • 2011
  • Purpose: To apply a computer assisted navigation system to orthognathic surgery, a simple and efficient measuring algorithm calculation based on affine transformation was designed. A method of improving accuracy and reducing errors in orthognathic surgery by use of an optical tracking camera was studied. Methods: A total of 5 points on one surgical splint were measured and tracked by the Polaris $Vicra^{(R)}$ (Northern Digital Inc Co., Ontario, Canada) optical tracking system in two cases. The first case was to apply the transformation matrix at pre- and postoperative situations, and the second case was to apply an affine transformation only after the postoperative situation. In each situation, the predictive measuring value was changed to the final measuring value via an affine transformation algorithm and the expected coordinates calculated from the model were compared with those of the patient in the operation room. Results: The mean measuring error was $1.027{\pm}0.587$ using the affine transformation at pre- and postoperative situations and the average value after the postoperative situation was $0.928{\pm}0.549$. The farther a coordinate region was from the reference coordinates which constitutes the transform matrixes, the bigger the measuring error was found which was calculated from an affine transformation algorithm. Conclusion: Most difference errors were brought from mainly measuring process and lack of reproducibility, the affine transformation algorithm formula from postoperative measuring values by using of optic tracking system between those of model surgery and those of patient surgery can be selected as minimizing the difference error. To reduce coordinate calculation errors, minimum transformation matrices must be used and reference points which determine an affine transformation must be close to the area where coordinates are measured and calculated, as well as the reference points need to be scattered.

Reliable Camera Pose Estimation from a Single Frame with Applications for Virtual Object Insertion (가상 객체 합성을 위한 단일 프레임에서의 안정된 카메라 자세 추정)

  • Park, Jong-Seung;Lee, Bum-Jong
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.499-506
    • /
    • 2006
  • This Paper describes a fast and stable camera pose estimation method for real-time augmented reality systems. From the feature tracking results of a marker on a single frame, we estimate the camera rotation matrix and the translation vector. For the camera pose estimation, we use the shape factorization method based on the scaled orthographic Projection model. In the scaled orthographic factorization method, all feature points of an object are assumed roughly at the same distance from the camera, which means the selected reference point and the object shape affect the accuracy of the estimation. This paper proposes a flexible and stable selection method for the reference point. Based on the proposed method, we implemented a video augmentation system that inserts virtual 3D objects into the input video frames. Experimental results showed that the proposed camera pose estimation method is fast and robust relative to the previous methods and it is applicable to various augmented reality applications.

A Moving Path Control of an Automatic Guided Vehicle Using Relative Distance Fingerprinting (상대거리 지문 정보를 이용한 무인이송차량의 주행 경로 제어)

  • Hong, Youn Sik;Kim, Da Jung;Hong, Sang Hyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.10
    • /
    • pp.427-436
    • /
    • 2013
  • In this paper, a method of moving path control of an automatic guided vehicle in an indoor environment through recognition of marker images using vision sensors is presented. The existing AGV moving control system using infrared-ray sensors and landmarks have faced at two critical problems. Since there are many windows in a crematorium, they are going to let in too much sunlight in the main hall which is the moving area of AGVs. Sunlight affects the correct recognition of landmarks due to refraction and/or reflection of sunlight. The second one is that a crematorium has a narrow indoor environment compared to typical industrial fields. Particularly when an AVG changes its direction to enter the designated furnace the information provided by guided sensors cannot be utilized to estimate its location because the rotating space is too narrow to get them. To resolve the occurrences of such circumstances that cannot access sensing data in a WSN environment, a relative distance from marker to an AGV will be used as fingerprinting used for location estimation. Compared to the existing fingerprinting method which uses RSS, our proposed method may result in a higher reliable estimation of location. Our experimental results show that the proposed method proves the correctness and applicability. In addition, our proposed approach will be applied to the AGV system in the crematorium so that it can transport a dead body safely from the loading place to its rightful destination.

An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration (예측 불가능한 호흡 변화에 따른 사이버나이프 종양 추적 방사선 치료의 정확도 분석)

  • Seo, jung min;Lee, chang yeol;Huh, hyun do;Kim, wan sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.157-166
    • /
    • 2015
  • Purpose : Cyber-Knife tumor tracking system, based on the correlation relationship between the position of a tumor which moves in response to the real time respiratory cycle signal and respiration was obtained by the LED marker attached to the outside of the patient, the location of the tumor to predict in advance, the movement of the tumor in synchronization with the therapeutic device to track real-time tumor, is a system for treating. The purpose of this study, in the cyber knife tumor tracking radiation therapy, trying to evaluate the accuracy of tumor tracking radiation therapy system due to the change in the form of unpredictable sudden breathing due to cough and sleep. Materials and Methods : Breathing Log files that were used in the study, based on the Respiratory gating radiotherapy and Cyber-knife tracking radiosurgery breathing Log files of patients who received herein, measured using the Log files in the form of a Sinusoidal pattern and Sudden change pattern. it has been reconstituted as possible. Enter the reconstructed respiratory Log file cyber knife dynamic chest Phantom, so that it is possible to implement a motion due to respiration, add manufacturing the driving apparatus of the existing dynamic chest Phantom, Phantom the form of respiration we have developed a program that can be applied to. Movement of the phantom inside the target (Ball cube target) was driven by the displacement of three sizes of according to the size of the respiratory vertical (Superior-Inferior) direction to the 5 mm, 10 mm, 20 mm. Insert crosses two EBT3 films in phantom inside the target in response to changes in the target movement, the End-to-End (E2E) test provided in Cyber-Knife manufacturer depending on the form of the breathing five times each. It was determined by carrying. Accuracy of tumor tracking system is indicated by the target error by analyzing the inserted film, additional E2E test is analyzed by measuring the correlation error while being advanced. Results : If the target error is a sine curve breathing form, the size of the target of the movement is in response to the 5 mm, 10 mm, 20 mm, respectively, of the average $1.14{\pm}0.13mm$, $1.05{\pm}0.20mm$, with $2.37{\pm}0.17mm$, suddenly for it is variations in breathing, respective average $1.87{\pm}0.19mm$, $2.15{\pm}0.21mm$, and analyzed with $2.44{\pm}0.26mm$. If the correlation error can be defined by the length of the displacement vector in the target track is a sinusoidal breathing mode, the size of the target of the movement in response to 5 mm, 10 mm, 20 mm, respective average $0.84{\pm}0.01mm$, $0.70{\pm}0.13mm$, with $1.63{\pm}0.10mm$, if it is a variant of sudden breathing respective average $0.97{\pm}0.06mm$, $1.44{\pm}0.11mm$, and analyzed with $1.98{\pm}0.10mm$. The larger the correlation error values in both the both the respiratory form, the target error value is large. If the motion size of the target of the sine curve breathing form is greater than or equal to 20 mm, was measured at 1.5 mm or more is a recommendation value of both cyber knife manufacturer of both error value. Conclusion : There is a tendency that the correlation error value between about target error value magnitude of the target motion is large is increased, the error value becomes large in variation of rapid respiration than breathing the form of a sine curve. The more the shape of the breathing large movements regular shape of sine curves target accuracy of the tumor tracking system can be judged to be reduced. Using the algorithm of Cyber-Knife tumor tracking system, when there is a change in the sudden unpredictable respiratory due patient coughing during treatment enforcement is to stop the treatment, it is assumed to carry out the internal target validation process again, it is necessary to readjust the form of respiration. Patients under treatment is determined to be able to improve the treatment of accuracy to induce the observed form of regular breathing and put like to see the goggles monitor capable of the respiratory form of the person.

  • PDF

In Situ Single Cell Monitoring by Isocyanide-Functionalized Ag and Au Nanoprobe-Based Raman Spectroscopy

  • Lee, So-Yeong;Jang, Soo-Hwa;Cho, Myung-Haing;Kim, Young-Min;Cho, Keun-Chang;Ryu, Pan Dong;Gong, Myoung-Seon;Joo, Sang-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.904-910
    • /
    • 2009
  • The development of effective cellular imaging requires a specific labeling method for targeting, tracking, and monitoring cellular/molecular events in the living organism. For this purpose, we studied the cellular uptake of isocyanide-functionalized silver and gold nanoparticles by surface-enhanced Raman scattering (SERS). Inside a single mammalian cell, we could monitor the intracellular behavior of such nanoparticles by measuring the SERS spectra. The NC stretching band appeared clearly at ${\sim}2,100cm^{-1}$ in the well-isolated spectral region from many organic constituents between 300 and 1,700 or 2,800 and $3,600cm^{-1}$. The SERS marker band at ${\sim}2,100cm^{-1}$ could be used to judge the location of the isocyanide-functionalized nanoparticles inside the cell without much spectral interference from other cellular constituents. Our results demonstrate that isocyanide-modified silver or gold nanoparticle-based SERS may have high potential for monitoring and imaging the biological processes at the single cell level.

Stabilizing Camera Poses in Marker Tracking Using History Buffer (히스토리 버퍼를 사용하여 떨림 현상을 줄이는 마커 추적)

  • Yoon, Jong-Hyun;Lee, Bum-Jong;Park, Jong-Seung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.448-452
    • /
    • 2006
  • 본 논문에서는 특정 마커를 사용하는 실감형 증강현실 시스템 상에서 카메라가 비정형적인 움직임을 하는 경우에 대하여, 다중 마커를 사용한 떨림 현상을 줄인 실시간 움직임 추적 기법을 제안하고자 한다. 카메라의 움직임을 추정하기 위하여 카메라와 마커 사이의 변환을 계산해야 한다. 이미지로부터 검출된 각 마커의 네 모서리 점들을 이용하여, 각 마커에 대한 변환을 계산한다. 마커는 서로 다른 로컬 좌표계를 가지고 있고, 마커에 대한 변환은 해당 마커의 좌표계에 의해 정의된다. 다중 마커의 로컬 좌표계로부터 최적의 카메라 움직임을 추정하기 위한 정합 알고리즘을 제안한다. 정합을 위한 방법으로 레퍼런스 마커를 사용한다. 레퍼런스 마커는 정합 과정에서 자동적으로 선택된다. 레퍼런스 마커를 기준으로 각 마커의 변환에 대해 신뢰성(confidence rate)을 기반으로 가중치를 적용함으로써 최적의 카메라 움직임을 추정할 수 있다. 또한 추정된 카메라의 움직임의 최적화를 위하여 히스토리 버퍼를 사용하여 떨림 현상을 제거하는 방법을 제안한다. 추정된 카메라의 위치에 대한 평균 필터 및 중간 필터의 개념과 유사한 보정 방법을 통해 떨림 현상을 제거한다. 실험을 통해 다른 방법들과 비교한 우리가 제안한 방법의 정확성을 확인할 수 있다.

  • PDF

Augmented Visualization of Modeling & Simulation Analysis Results (모델링 & 시뮬레이션 해석 결과 증강가시화)

  • Kim, Minseok;Seo, Dong Woo;Lee, Jae Yeol;Kim, Jae Sung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.202-214
    • /
    • 2017
  • The augmented visualization of analysis results can play an import role as a post-processing tool for the modeling & simulation (M&S) technology. In particular, it is essential to develop such an M&S tool which can run on various multi-devices. This paper presents an augmented reality (AR) approach to visualizing and interacting with M&S post-processing results through mobile devices. The proposed approach imports M&S data, extracts analysis information, and converts the extracted information into the one used for AR-based visualization. Finally, the result can be displayed on the mobile device through an AR marker tracking and a shader-based realistic rendering. In particular, the proposed method can superimpose AR-based realistic scenes onto physical objects such as 3D printing-based physical prototypes in a seamless manner, which can provide more immersive visualization and natural interaction of M&S results than conventional VR or AR-based approaches. A user study has been performed to analyze the qualitative usability. Implementation results will also be given to show the advantage and effectiveness of the proposed approach.

An Implementation of Device Connection and Layout Recognition Techniques for the Multi-Display Contents Delivery System (멀티 디스플레이 콘텐츠 전송 시스템을 위한 디바이스 연결 및 배치 인식 기법의 구현)

  • Jeon, So-yeon;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1479-1486
    • /
    • 2016
  • According to the advancement of display devices, the multi-screen contents display environment is growing to be accepted for the display exhibition area. The objectives of this research are to find communications technology and to design an editor interface of contents delivery system for the larger and adaptive multi-display workspaces. The proposed system can find existence of display devices and get information without any additional tools like marker, and can recognize device layout with only web-cam and image processing technology. The multi-display contents delivery system is composed of devices with three roles; display device, editor device, and fixed server. The editor device which has the role of main control uses UPnP technology to find existence and receive information of display devices. extract appointed color in captured picture using a tracking library to recognize the physical layout of display devices. After the device information and physical layout of display devices are connected, the content delivery system allows the display contents to be sent to the corresponding display devices through WebSocket technology. Also the experimental results show the possibility of our device connection and layout recognition techniques can be utilized for the large spaced and adaptive multi-display applications.

A study on the effect of introducing EBS AR production system on content (EBS AR 실감영상 제작 시스템 도입이 콘텐츠에 끼친 영향에 대한 연구)

  • Kim, Ho-sik;Kwon, Soon-chul;Lee, Seung-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.711-719
    • /
    • 2021
  • EBS has been producing numerous educational contents with traditional virtual studio production systems since the early 2000s and applied AR video production system in October 2020, twenty-years after. Although the basic concept of synthesizing graphic elements and actual image in real time by tracking camera movement and lens information is similar to the previous one but the newly applied AR video production system contains some of advanced technologies that are improved over the previous ones. Marker tracking technology that enables camera movement free and position tracking has been applied that can track the location stably, and the operating software has been applied with Unreal Engine, one of the representative graphic engines used in computer game production, therefore the system's rendering burden has been reduced, enabling high-quality and real-time graphic effects. This system is installed on a crane camera that is mainly used in a crane shot at the live broadcasting studio and applied for live broadcasting programs for children and some of the videos such as program introductions and quiz events that used to be expressed in 2D graphics were converted to 3D AR videos which has been enhanced. This paper covers the effect of introduction and application of the AR video production system on EBS content production and the future development direction and possibility.

Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT (XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구)

  • Jeong, Hanseong;Kim, Youngju;Oh, Ohsung;Lee, Seho;Jeon, Hosang;Lee, Seung Wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.143-152
    • /
    • 2015
  • In this study, we aim to design the architecture of the kV imaging system for tumor tracking in the dual-head gantry system and analyze its accuracy by simulations. We established mathematical formulas and algorithms to track the tumor position with the two-pair kV imaging systems when they are in the non-orthogonal positions. The algorithms have been designed in the homogeneous coordinate framework and the position of the source and the detector coordinates are used to estimate the tumor position. 4D XCAT (4D extended cardiac-torso) software was used in the simulation to identify the influence of the angle between the two-pair kV imaging systems and the resolution of the detectors to the accuracy in the position estimation. A metal marker fiducial has been inserted in a numerical human phantom of XCAT and the kV projections were acquired at various angles and resolutions using CT projection software of the XCAT. As a result, a positional accuracy of less than about 1mm was achieved when the resolution of the detector is higher than 1.5 mm/pixel and the angle between the kV imaging systems is approximately between $90^{\circ}$ and $50^{\circ}$. When the resolution is lower than 1.5 mm/pixel, the positional errors were higher than 1mm and the error fluctuation by the angles was greater. The resolution of the detector was critical in the positional accuracy for the tumor tracking and determines the range for the acceptable angle range between the kV imaging systems. Also, we found that the positional accuracy analysis method using XCAT developed in this study is highly useful and will be a invaluable tool for further refined design of the kV imaging systems for tumor tracking systems.