• Title/Summary/Keyword: marine engine block

Search Result 18, Processing Time 0.019 seconds

A Study on the Dynamic Stress Analysis of an Engine Block using Flexible-body Dynamic Analysis (유연체 동역학적 해석을 이용한 엔진블록의 동응력 해석에 관한 연구)

  • Son, Chang-Su;Cheon, Ho-Jeong;Seong, Hwal-Gyeong;Yoon, Keon-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.805-813
    • /
    • 2011
  • The dynamic stress of the diesel engine block is analyzed by using flexible-body dynamic analysis. Multiple loadings including the pressure load due to gas combustion, thermal load, and dynamic load are considered. Thermal load is assumed constant, however, pressure load and dynamic load are treated as time dependent. The present work is focused on the dynamic stress analysis, especially on finding critical points of the engine block. The analysis model includes four parts - engine block, generator, bed, and mounts. On the other hand, crank shaft, pistons, and main bearings are excluded from the model. However, their dynamic effects are applied by dynamic forces, obtained in the separate analysis. Dynamic stress is found by using flexible body dynamic analysis, and compared to the measured data.

Numerical investigation of the high pressure selective catalytic reduction system impact on marine two-stroke diesel engines

  • Lu, Daoyi;Theotokatos, Gerasimos;Zhang, Jundong;Tang, Yuanyuan;Gan, Huibing;Liu, Qingjiang;Ren, Tiebing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.659-673
    • /
    • 2021
  • This study aims to investigate the impact of the High Pressure Selective Catalytic Reduction system (SCR-HP) on a large marine two-stroke engine performance parameters by employing thermodynamic modelling. A coupled model of the zero-dimensional type is extended to incorporate the modelling of the SCR-HP components and the Control Bypass Valve (CBV) block. This model is employed to simulate several scenarios representing the engine operation at both healthy and degraded conditions considering the compressor fouling and the SCR reactor clogging. The derived results are analysed to quantify the impact of the SCR-HP on the investigated engine performance. The SCR system pressure drop and the cylinder bypass valve flow cause an increase of the engine Specific Fuel Oil Consumption (SFOC) in the range 0.3-2.77 g/kWh. The thermal inertia of the SCR-HP is mainly attributed to the SCR reactor, which causes a delayed turbocharger response. These effects are more pronounced at low engine loads. This study supports the better understanding of the operating characteristics of marine two-stroke diesel engines equipped with the SCR-HP and quantification of the impact of the components degradation on the engine performance.

Study on the Steady-State Heat Conduction Characteristics of a Small Gasoline Engine (소형 가솔린 기관의 정상 열전도 특성에 관한 연구)

  • 김병탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.267-277
    • /
    • 1997
  • In this paper, heat conduction characteristics of the cylinder block of a small 3 - cylinder, 4¬stroke gasoline engine were analyzed using the 3 - dimensional finite element method. Based on the experimental data, the engine cycle simulation was carried out in order to obtain the heat transfer coefficient and the temperature of the gas and the mean heat transfer coefficient of the coolant. Heat transfer data of the gas, which were averaged with respect to exposure time to the wall, were taken as convective boundary conditions corresponding to the operating conditions to obtain the temperature fields of the block. Finally silicon nitride(Si3N4) was taken as the material of the block liner in order to investigate its temperature distribution characteristics and compare the results with the original ones.

  • PDF

Structure-borne Noise Analysis of Marine Diesel Engine Considering Receptance of Hull Structure at Mounting Point (선체 마운트 지지점에서의 리셉턴스를 고려한 선박용 디젤 엔진의 고체전달음 해석)

  • Jang, Seong-Gil;Jeong, Weui-Bong;Hong, Chin-Suk;Bae, Soo-Ryong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.120-128
    • /
    • 2011
  • This paper presents an efficient method to analyze noise and vibration of marine diesel engines mounted on flexible hull structure. The analysis model should in general include the hull structure, leading to lots of computational efforts. To minimize the computational efforts, in this paper, the transfer synthesis utilizing the receptance at the mounting points is proposed. The procedure is then verified by comparing the results with those from the full model calculation. The effects of flexible hull structure on the acoustic power from engine block are finally investigated. It is found that the effect of the hull is significant when the receptance of hull structure is similar to or greater than that of mount or engine block.

Study on the Thermal Stress Distribution Characteristivs of the Cylinder Block of a Light Gasoline Engine (경차용 가솔린 기관 실린더 블럭의 열응력 분포 특성에 대한 연구)

  • 김병탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.800-808
    • /
    • 1998
  • In this study the thermal stress distribution and deformantion characteristics resulting from the nonuniform temperature fields of the cylinder block of a light 3-cylinder 4-stroke gasoline engine were analyzed using the 3-dimensional finite element method. The temperature distributions req-uisite for the thermoelastic behavior alalysis were obtained from the steady-state heat conduction analysis performed on the basis of experimental data. in order to examine the effect of a ceramic material the cylinder liner was replaced by the silicon nitride($Si_{3}N_{4}$) and its thermal behaviors were compared with those of the original block.

  • PDF

A Real-Time Monitoring System Model for Reducing Manufacturing Lead-Time in Numerical Control Process - Focusing on the Marine Engine Block Process - (제조 리드타임 단축을 위한 NC 가공공정에서의 실시간 모니터링 시스템 모형 - 선박용 엔진블록 가공공정을 중심으로 -)

  • Kong, Myung-Dal
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.3
    • /
    • pp.11-19
    • /
    • 2018
  • This study suggests a model of production information system that can reduce manufacturing lead time and uniformize quality by using DNC S/W as a part of constructing production information management system in the industrial field of the existing marine engine block manufacturing companies. Under the effect of development of this system, the NC machine interface device can be installed in the control computer to obtain the quality information of the workpiece in real time so that the time to inspect the process quality and verify the product defect information can be reduced by more than 70%. In addition, the reliability of quality information has been improved and the external credibility has been improved. It took 30 minutes for operator to obtain, analyze and manage the quality information when the existing USB memory is used, but the communication between the NC controller computer and the NC controller in real time was completed to analyze the workpiece within 10 seconds.

A Study on the Weight Minimization of an Automobile Engine Block by Optimum Structural Modification (최적구조변경법에 의한 자동차 엔진 블록의 중량최소화에 관한 연구)

  • 길병래
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.560-568
    • /
    • 1998
  • Recently to develop an automobile with better properities many researches and investments have been executed. In this paper we intend to improve the automobile properties by reducing the weight of the engine without changing the dynamic characteristics. At first the vibration analysis by the Substructure Synthesis Mehtod and the exciting test of the engine model performed to confirm the reliability of the analyzing tools. And the weight minimiza-tion is performed by the Sensitivity Analysis and the Optimum Structural Modificationl. To decrease the engine weight ideally the weight of the parts with the low sensitivity is to cut mainly and the changing quantity of the natural frequency by the cut is to be recovered by the weight modification of the parts with the high sensitivity. As actually the mathematical unique solution for the homogeneous problem(i. e. 0 object func-tion problem)does not exist we redesign the engine block with much thinner initial thickness and recover the natural frequencies and natural modes of original structure by the sensitivity analy-sis and then observe the Frequency Response Function(FRF) for the interesting points. In this analysis the original thickness of the engine model is 8mm and the redesigned initial thicknesses are 5mm and 6mm, And the number of the interesting natural frequencies are 1, 2, 3, 4 and 5 respectively.

  • PDF

A Cause Analysis of Fatigue Failure of Fuel Pump Block Material(CK35) for Marine Engine (선박 엔진용 Fuel Pump Block 소재(CK35)의 피로파손 원인규명)

  • Choi Sung Jong;Kang Chang Won;Kim Tae Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.663-670
    • /
    • 2005
  • DIN CK35 (JIS S35CK) steels have been used as a material in fuel pump blocks for marine engines. Failures in the inner surface of a drilling hole, due to the initiation of fatigue cracks have been frequently reported. However, the mechanism initiating these cracks and growths has not been clearly diagnosed yet. This study was conducted using a scraped fuel pump block, containing an initiated fatigue crack in the inner surface of a drilling hole. Initially, the cracks and fractured surfaces inside the block were investigated using an optical microscope and a SEM (Scanning Electron Microscope). In addition, microstructure observation, fatigue life test and fatigue crack growth test were performed using a specimen, which was taken from the same block. Results from these tests are summarized as follows; (1) The early crack in the block was supposed to occur inside the inner surface of the drilling hole. (2) The fatigue endurance of this material was about 330 Mpa. (3) The early crack was generated in the cavitations created by the breakdown of a big inclusion, or separation between the big inclusion and the base metal, in which the fundamental ingredients of the inclusion were C, 5, and Mn. (4) In order to prevent these types of failures, the suppression of inclusions inflow by improving the casting process, formation of fine inclusions by applying a heat treatment process, and coating of the surface of the drilling hole were required.

Radiated Noise Analysis of Marine Diesel Engine from Structural Vibration (선박용 디젤 엔진의 구조진동에 의한 방사소음 해석)

  • Kim, Dae-Hwan;Hong, Chin-Suk;Jeong, Weui-Bong;Park, Jeong-Geun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1060-1065
    • /
    • 2007
  • This paper summarizes a design procedure of radiated noise from engine blocks of marine engines. This air-borne noise is one of the significant noise contributors including the aeroacoustic noise due to intake and exhaust and the re-radiation due to structure-borne noise. Excitation forces by engine operations are evaluated taking into account the power generation mechanism from the burning process to the subsequence motion of internal parts; piston, connecting rod, and crank shaft. The acoustic transfer vector method is incorporated to effectively simulate the radiated noise field under the various operation conditions. A contribution analysis for the various excitations to the radiated noise is conducted. It is found that the firing pressure is the main source of the radiated noise, and so the structure of the cylinder can be modified to significantly reduce the radiated noise from the engine block.

  • PDF

Dynamic Characteristics of torsion for Marine Propulsion Shafting system with Elastic Rubber Coupling (고무 탄성커플링을 갖는 선박 추진용 축계 비틀림의 동특성)

  • 이돈출;김상환;유정대
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.742-748
    • /
    • 2003
  • As for marine propulsion shafting system using 4 stroke diesel engine, it is common to apply reduction gear box between diesel engine and shafting with a view of increasing mechanical efficiency, which inevitably require elastic coupling due to avoid chattering and hammering inside of gear box. In this study, optimum method of rectifying propulsion shafting system in case of 750ton fishing vessel specially in a view of torsional vibration, is theoretically studied. After exchange of diesel engine and gear box, analysis result of torsional vibration get worse and so some countermeasure are needed. The elastic coupling is modified from present block type rubber coupling showing relatively high torsional stiffness to rubber coupling with two series elements directly connected. The vibration measurement using two laser torsion meters was done during sea trial, whose results are compared to those of calculation and verified.

  • PDF