• Title/Summary/Keyword: marine aerosol number concentration

Search Result 4, Processing Time 0.019 seconds

The Fluctuations of Aerosol Number Concentration in the leodo Ocean Research Station (이어도 해양종합과학기지에서의 에어로솔 수 농도 변동)

  • Park, Seong-Hwa;Lee, Dong-In;Seo, Kil-Jong;You, Cheol-Hwan;Jang, Min;Kang, Mi-Yeong;Jang, Sang-Min;Kim, Dong-Chul;Choi, Chang-Sup;Lee, Byung-Gul
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.721-733
    • /
    • 2009
  • To examine the fluctuations of aerosol number concentration with different size in the boundary layer of marine area during summer season, aerosol particles were assayed in the Ieodo Ocean Research Station, which is located 419 km southwest of Marado, the southernmost island of Korea, from 24 June to 4 July, 2008. The Laser Particle Counter (LPC) was used to measure the size of aerosol particles and NCEP/NCAR reanalysis data and sounding data were used to analyze the synoptic condition. The distribution of aerosol number concentration had a large variation from bigger particles more than 3 ${\mu}m$ in diameter to smaller particles more than 1 ${\mu}m$ in diameter with wind direction during precipitation. The aerosol number concentration decreased with increasing temperature. An increase (decrease) of small size of aerosol (0.3${\sim}$0.5 ${\mu}m$ in diameter) number concentration was induced by convergence (divergence) of the wind fields. The aerosol number concentration of bigger size more than 3 ${\mu}m$ in diameter after precipitation was removed as much as 89${\sim}$94% compared with aerosol number concentration before precipitation. It is considered that the larger aerosol particles would be more efficient for scavenging at marine boundary layer. In addition, the aerosol number concentration with divergence and convergence could be related with the occurrence and mechanism of aerosol in marine boundary layer.

The Variation of Aerosol Number Concentrations in Relation with 3D Wind Components in the Ieodo Ocean Research Station (이어도 해양종합과학기지에서의 3차원 바람성분에 따른 에어로솔 수 농도 변동 특성)

  • Park, Sung-Hwa;Jang, Sang-Min;Lee, Dong-In;Jung, Woon-Seon;Jeong, Jong-Hoon;Jung, Sung-A;Jung, Chang Hoon;Kim, Kyungsik;Kim, Kyung-Eak
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.97-107
    • /
    • 2012
  • To investigate variation of aerosol number concentration at each different size with three-dimensional (3D) wind components in ocean area, aerosol particles and 3D wind components were measured in the Ieodo Ocean Research Station, which is located to 419 km southwest from Marado, the southernmost island of Korea, from 25 June to 8 July 2010. The Laser Particle Counter (LPC) and ultrasonic anemometer were used to measure the size of aerosol particles and 3D wind components (zonal (u), meridional (v), and vertical (w) wind) respectively. Surface weather chart, NCEP/NCAR reanalysis data and sounding data were used to analyze the synoptic condition. The distribution of aerosol number concentration had a large variation from bigger particles more than 1.0 ${\mu}m$ in diameter by wind direction during precipitation. In the number concentration of aerosol particles with respect to the weather conditions, particles larger than 1.0 ${\mu}m$ in size were decreased and sustained to the similar concentration at smaller particles during precipitation. The increase in aerosol number concentration was due to the sea-salt particles which was suspended by southwesterly and upward winds. In addition, the aerosol number concentration with vertical wind flow could be related with the occurrence and increasing mechanism of aerosol in marine boundary layer.

The Fluctuation of Marine Aerosol Number Concentrations Related with Vertical Winds (연직풍에 따른 해양성 에어러솔 수 농도 변동에 관한 연구)

  • Park, Sung-Hwa;Jang, Sang-Min;Jung, Woon-Seon;Jeong, Jong-Hoon;Lee, Dong-In
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.259-268
    • /
    • 2012
  • To investigate the fluctuation of marine aerosol number concentration at each different size with vertical winds in ocean area, aerosol particles and vertical wind components were measured in the Ieodo Ocean Research Station, which is located to 419 km southwest of Marado, the southernmost island of Korea, from 8 to 22 June 2009. The Laser Particle Counter (LPC) and ultrasonic anemometer were used to measure the number of aerosol particles and vertical wind speed. Surface weather chart, NCEP/NCAR reanalysis data and sounding data were used to analyze the synoptic condition. The distribution of aerosol number concentration had a large fluctuation of bigger particles more than 1.0 ${\mu}m$ in diameter by vertical wind speed during precipitation. The aerosol particles larger than 1.0 ${\mu}m$ in diameter increased as the wind changed from downward to upward during precipitation. The aerosol number concentration of bigger size than 1.0 ${\mu}m$ in diameter increased about 5 times when vertical velocity was about 0.4 $ms^{-1}$. In addition, the accumulation and coarse mode aerosol number concentration decreased about 45% and 92%, respectively compared to concentrations during precipitation period. It is considered that vertical wind plays an important role for the increasing of coarse mode aerosol number concentration compared to the large aerosol particles sufficiently removed by the scavenging effect of horizontal winds. Therefore, the upward vertical winds highly contribute to the formation and increase in aerosol number concentration below oceanic boundary layer.

Characteristics of Aerosol and Cloud Condensation Nuclei Concentrations Measured over the Yellow Sea on a Meteorological Research Vessel, GISANG 1 (기상 관측선 기상 1호에서 관측한 황해의 에어로졸과 구름응결핵 수농도 특성 연구)

  • Park, Minsu;Yum, Seong Soo;Kim, Najin;Cha, Joo Wan;Ryoo, Sang Boom
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.243-256
    • /
    • 2016
  • Total number concentration of aerosols larger than 10 nm ($N_{CN10}$), 3 nm ($N_{CN3}$), and cloud condensation nuclei ($N_{CCN}$) were measured during four different ship cruises over the Yellow Sea. Average values of $N_{CN10}$ and $N_{CCN}$ at 0.6% supersaturation were 6914 and $3353cm^{-3}$, respectively, and the minimum value of $N_{CN10}$ was $2000cm^{-3}$, suggesting significant anthropogenic influence even at relatively clean marine environment. Although $N_{CN10}$ and $N_{CN3}$ increased near the coast due to anthropogenic influence, $N_{CCN}$ was relatively constant and therefore $N_{CCN}/N_{CN10}$ ratio tended to decrease, suggesting that coastal aerosols were relatively less hygroscopic. In general $N_{CN10}$, $N_{CN3}$, and $N_{CCN}$ during the cruises seemed to be significantly influenced by wet scavenging effects (e.g. fog) and boundary layer height variation. Only one new particle formation (NPF) event was observed during the measurement period. Interestingly, the NPF event occurred during a dust storm event and spatial scale of the NPF event was estimated to be larger than 100 km. These results demonstrate that aerosol and CCN concentration over the Yellow Sea can vary due to various different factors.