DOI QR코드

DOI QR Code

The Fluctuations of Aerosol Number Concentration in the leodo Ocean Research Station

이어도 해양종합과학기지에서의 에어로솔 수 농도 변동

  • Park, Seong-Hwa (Interdisciplinary Program of Earth Environmental Engineering, Pukyong National University) ;
  • Lee, Dong-In (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Seo, Kil-Jong (Atmospheric Environmental Research Institute, Pukyong National University) ;
  • You, Cheol-Hwan (Atmospheric Environmental Research Institute, Pukyong National University) ;
  • Jang, Min (Atmospheric Environmental Research Institute, Pukyong National University) ;
  • Kang, Mi-Yeong (Atmospheric Environmental Research Institute, Pukyong National University) ;
  • Jang, Sang-Min (Interdisciplinary Program of Earth Environmental Engineering, Pukyong National University) ;
  • Kim, Dong-Chul (Science Applications International Cooperation, NCEP/EMC) ;
  • Choi, Chang-Sup (Oceanographic Division, National Oceanographic Research Institute) ;
  • Lee, Byung-Gul (Department of Civil Engineering, Jeju National University)
  • 박성화 (부경대학교 지구환경공학연협동과정) ;
  • 이동인 (부경대학교 환경대기과학과) ;
  • 서길종 (부경대학교 대기환경연구소) ;
  • 유철환 (부경대학교 대기환경연구소) ;
  • 장민 (부경대학교 대기환경연구소) ;
  • 강미영 (부경대학교 대기환경연구소) ;
  • 장상민 (부경대학교 지구환경공학연협동과정) ;
  • 김동철 ;
  • 최창섭 (국립혜양조사원 해양과) ;
  • 이병걸 (제주대학교 토목학과)
  • Published : 2009.07.31

Abstract

To examine the fluctuations of aerosol number concentration with different size in the boundary layer of marine area during summer season, aerosol particles were assayed in the Ieodo Ocean Research Station, which is located 419 km southwest of Marado, the southernmost island of Korea, from 24 June to 4 July, 2008. The Laser Particle Counter (LPC) was used to measure the size of aerosol particles and NCEP/NCAR reanalysis data and sounding data were used to analyze the synoptic condition. The distribution of aerosol number concentration had a large variation from bigger particles more than 3 ${\mu}m$ in diameter to smaller particles more than 1 ${\mu}m$ in diameter with wind direction during precipitation. The aerosol number concentration decreased with increasing temperature. An increase (decrease) of small size of aerosol (0.3${\sim}$0.5 ${\mu}m$ in diameter) number concentration was induced by convergence (divergence) of the wind fields. The aerosol number concentration of bigger size more than 3 ${\mu}m$ in diameter after precipitation was removed as much as 89${\sim}$94% compared with aerosol number concentration before precipitation. It is considered that the larger aerosol particles would be more efficient for scavenging at marine boundary layer. In addition, the aerosol number concentration with divergence and convergence could be related with the occurrence and mechanism of aerosol in marine boundary layer.

Keywords

References

  1. Willeke K., Baron P. A., 1993, Aerosol measurement principles: Techniques and Applications, Van Nostrand Reinhold, 876
  2. Arao K., Ishizaka Y., 1986, Volume and mass of yellow sand dust in the air over Japan as estimated from atmospheric turbidity, J. Meteor. Soc. Japan, 64, 79-94
  3. Carlson T. N., Caverly R. S., 1997, Radiative characteristics of Saharan dust at solar wavelengths, J. Geophys. Res., 82, 3141-3152 https://doi.org/10.1029/JC082i021p03141
  4. Duce R. A., Unni C. K., Ray B. J., Prospero J. M., Merril J. T., 1980, Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: Temporal variability, Science, 209, 1522-1524 https://doi.org/10.1126/science.209.4464.1522
  5. Dutton E. G., Reddy P., Ryan S., DeLuisi J. J., 1994, Features and effect of aerosol optical depth observed at Mauna Loa, Hawaii: 1982-1992, J. Geophys., 99, D4, 8295-8306 https://doi.org/10.1029/93JD03520
  6. Smimov A., Holben B. N., Slutsker I., Welton E. J., Formenti P., 1998, Optical properties of Saharan dust during ACE-2, J. Geophys. Res., 103, D21, 28079-28092 https://doi.org/10.1029/98JD01930
  7. Seinfeld J. H., Pandis S. N., 1998, Atmospheric Chemistry and Physics-From Air Pollution to Climate Change, John Wiley & Sons, Inc., 132
  8. 김지영, 최병철, 2002, 한반도에서 측정된 어에로솔의 크기분포와 지역별 특성, 한국기상학회지, 38, 2, 95-104
  9. IPCC, 1995, Climate Change 1995, In: The science of climate change, Houghton J. T., Meira Filho L. G., Callender B. A., Harris N., Kattenberg A., Maskell K(eds)., Cambridge Univ. Press, Cambridge, UK, 572pp
  10. Penner J. E., Charlson R. J., Hales j. M., Laulainene N., Leifer R., Navakov T., Ogren J., Radke L. F., Schwartz S. E., Travis L., 1994, Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols, Bull. Amer. Meteor. Soc., 75, 3, 375-400 https://doi.org/10.1175/1520-0477(1994)075<0375:QAMUOC>2.0.CO;2
  11. Ogren J. A., 1995, A systematic approach to in situ observations of aerosol properties, In: Charlson R. J., Heintzenberg J.(eds.), Aerosol Forcing of Climate, Wiley & Sons, New York, 215-226
  12. Nemesure S., Wagener R., Schwartz S. E., 1995, Direct shortwave forcing of climate by the anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity, J. Geophys. Res., 100, 26105-26116 https://doi.org/10.1029/95JD02897
  13. Alpert P., Kaufman Y. J., Shay-El Y., Tanre D., da Silva A., Schubert S., Joseph Y. H., 1998. Quantification of dust-forced heating of the lower troposphere, Nature, 395, 367-370 https://doi.org/10.1038/26456
  14. Pruppacher H. R., Klett J. D., 1978, Microphysics of clouds and precipitation, D. Reidel Publishing Company, 202-218
  15. Wark K., Warner C. F., 1976, Air Pollution: Its Origin Control, Harper and Row Pub., New York, 153
  16. Khemani L. T., Momin G. A., Naik M. S., 1987, Influence of atmospheric pollutants on cloud microphysics and rainfall, boundary-layer meteorology, 41, 367-380 https://doi.org/10.1007/BF00120452
  17. Lee D. I., 1991, On the atmospheric aerosol particles in the relation to wind systems, J. Korean Meteor. Soc., 27, 333-352
  18. Kim J. Y., Jung C. H., Choi B. C., Oh S. N., Brechtel F. J., Yoon S. C., Kim S. W., 2007, Number size distribution of atmospheric aerosols during ACE-Asia dust and precipitation events, Atmos. Environ., 41, 4841-4855 https://doi.org/10.1016/j.atmosenv.2007.02.024
  19. 박기준, 조경숙, 최병철, 김지영, 최재천, 2001, 기상인자에 따른 서울에서의 에어로솔 수 농도 특성, 한국기상학회 대기지, 11, 399-401
  20. 강미영, 2003, 내륙지역 강설시 레이더 바람장을 이용한 에어로솔 수 농도 변동, 한국환경과학회지, 17, 699-709 https://doi.org/10.5322/JES.2008.17.6.699
  21. 이동인, 강미영, 서길종, 유철환, 박성화, 김부경, 박남식, 2008, 남서해안지역 강설시 바람장 변화에 따른 에어로솔 수 농도 변동, 한국환경과학회지, 17, 699-709 https://doi.org/10.5322/JES.2008.17.6.699
  22. 김종환, 염성수, 최경섭, 2005, 남해, 황해 상에서의 미세 에어로솔 크기별 수농도 분포 관측, 한국대기환경학회 춘계학술대회논문집, 5 203-205
  23. Peng L., Min H., Zhijun W., Yuwen N., Tong Z., 2007, Marine aerosol size distributions in the springtime over China adjacent seas, Atmos. Environ., 41, 6784-6796 https://doi.org/10.1016/j.atmosenv.2007.04.045

Cited by

  1. Characterization of Aerosol Concentration during Severe Asian Dust Period at Busan, Korea in 20 March 2010 vol.23, pp.2, 2014, https://doi.org/10.5322/JESI.2014.23.2.275