• 제목/요약/키워드: marine advanced materials

검색결과 243건 처리시간 0.028초

A Study on the Composite Blade Performance Variation by Attaching Erosion Shield for Hovercraft

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Moon, Kyung-Man;Bae, Chang-Won;Kang, Byong-Yun;Yang, Dong-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권7호
    • /
    • pp.1017-1025
    • /
    • 2009
  • This study intends to study about the blade performance loss occurred due to the variation in the shape of airfoil from the attachment/non-attachment of blade erosion shield for hovercraft. This study model has used NACA 4412, has designed NACA 4412 by using Auto CAD and designed the shape that has attached an erosion shield to this model according to the thickness and length. By using these models, we have generated a grid by using GAMBIT and calculated the lift coefficient (Cl) and drag coefficient (Cd) by using the FLUENT code for flow analysis. Through this, we have calculated and compared the lift-to-drag ratio that is an indicator of airfoil performance according to the shape and attachment/non-attachment of erosion shield.

전기로 폐 MgO-C계 내화재의 제강원료 활용 가능성 연구 (Basic Study on the Recycling of a Waste MgO-C Refractory Material as a Flux for EAF Steelmaking)

  • 왕제필;김행구;고민석;이동헌
    • 자원리싸이클링
    • /
    • 제30권6호
    • /
    • pp.53-60
    • /
    • 2021
  • 현재 EAF 전기로 제강공정에서는 슬래그 중의 MgO 함량을 증가시켜 탈황능과 내화재 수명을 개선시키고자 돌로마이트(백운석) 용제(Flux)를 첨가하고 있으며, 또한 에너지효율을 증가시키기 위해 용강 중에 가탄재를 취입하고 있다. 이러한 견지에서 폐 MgO-C계 내화재를 재활용하는 연구를 진행하였다. 폐 MgO-C계 내화재는 MgO(>70%)과 탄소(>10%)를 대량 함유하고 있기 때문이다. 이런 목적으로 제강 슬래그를 대상으로 해서 폐 MgO-C계 내화재를 첨가하는 효과를 실험하였고 그 결과를 경소 돌로마이트를 첨가한 결과와 비교하여 폐 MgO-C계 내화재 재활용 효과를 평가하였다. 폐 MgO-C계 내화재를 사용해서 얻은 결과가 슬래그 염기도 측면에서 경소 돌로마이트를 사용한 결과와 유사하게 나타남으로써 기존 경소 돌로마이트 대체 가능성을 확인하였다. 특히 폐 MgO-C계 내화재를 사용한 경우에는, 폐 내화재에 다량 함유된 흑연 성분에 의한 슬래그 중의 철산화물과의 환원반응으로 CO가스가 발생하여 생긴 크고 작은 기포들이 관찰되었으며 이로써 슬래그 Foaming 효과를 기대할 수 있는 것으로 확인하였다.

음극 인가전위 하에서 type 2205과 type 316L의 수소취성 저항성 (Comparison of hydrogen embrittlement resistance between 2205 duplex stainless steels and type 316L austenitic stainless steels under the cathodic applied potential)

  • 서동일;이재봉
    • Corrosion Science and Technology
    • /
    • 제15권5호
    • /
    • pp.237-244
    • /
    • 2016
  • 2205 duplex stainless steels have been used for the construction of the marine environment, because of their excellent corrosion resistance and high strength. However, the resistance to hydrogen embrittlement (HE) may be less than that of 316L austenitic stainless steel. The reason why 316L stainless steels have better resistance to HE is associated with crystal structure (FCC, face centered cubic) and the higher stacking faults energy than 2205 duplex stainless steels. Furthermore 2205 stainless steels with or without tungsten were also examined in terms of HE. 2205 stainless steels containing tungsten is less resistible to HE. It is because dislocation tangle was formed in 2205 duplex stainless steels. Slow strain-rate tensile test (SSRT) was conducted to measure the resistance to HE under the cathodic applied potential. Hydrogen embrittlement index (HEI) was used to evaluate HE resistance through the quantitative calculation.

A Study on Dynamic Crack-Tip Fields in a Strain Softening Material

  • Jang, Seok-Ki;Xiankui Zhu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.494-502
    • /
    • 2003
  • The near-tip field of mode-I dynamic cracks steadily propagating in a strain softening material is investigated under plane strain conditions. The material is assumed to be incompressible and its deformation obeys the $J_2$ flow theory of plasticity. A power-law stress-strain relation with strain softening is adopted to account for the damage behavior of materials near the dynamic crack tip. By assuming that the stresses and strain have the same singularity at the crack tip. this paper obtains a fully continuous dynamic crack-tip field in the damage region. Results show that the stress and strain components the same logarithmic singularity of (In(R/r))$\delta$, and the angular variations of filed quantities are identical to those corresponding to the dynamic cracks in the elastic-perfectly plastic material.

Laser Peening: A Novel Tool to Reduce SCC Susceptibility and Prolong Fatigue Life of Metallic Components

  • Sano, Yuji;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.661-669
    • /
    • 2010
  • The effects of laser peening on metallic materials have been investigated with water-penetrable frequency-doubled Nd:YAG laser. Laser pulses of 200 mJ energy and 8 ns duration focused on samples underwater with 0.8 mm spot diameter. X-ray study showed that compressive residual stress was imparted on SKD61 from the surface to nearly 2 mm depth. Stress corrosion cracking (SCC) was prohibited for sensitized SUS304 even in a severely corrosive environment fatigue lives of SUS316L and SM490A welded samples were prolonged significantly in the high-cycle regime. Since 1999, laser peening has been applied to prevent SCC in operating nuclear power plants in Japan.

해상송전선로 설계 및 시공기술에 대한 고찰 (Design & Construction Technologies of 345kV marine Transmission Line)

  • 윤영순;김태영;김병호;나경구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.545-547
    • /
    • 2005
  • 345kV youngheung tansmission line which has been constructed in the western sea is the first and the largest marine project in the world crossing the youngheung island and the sihwa bay. It helps the stabilization of power supply greatly to cope with the rapid growth of the electric power consumption in the metropolitan areas and Gyeonggi province. Haying constructed the project successfully with the purely domestic-developed technologies, KEPCO is able to not only accumulate more advanced technologies of the marine project but also establish a bridgehead toward overseas market. It is very meaningful that we completed project successfully in spite of many difficulties including the uncertainty of the first project in the sea and strong objections from the environment groups and local residents. In this paper I will briefly introduce the project, newly developed technologies and materials.

  • PDF

Synthesis of a new class of carbon nanomaterials by solution plasma processing for use as air cathodes in Li-Air batteries

  • Kang, Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.833-837
    • /
    • 2015
  • Li-air batteries have a promising future for because of their high energy density, which could theoretically be equal to that of gasoline. However, substantial Li-air cell performance limitations exist, which are related to the air cathode. The cell discharge products are deposited on the surfaces of the porous carbon materials in the air electrode, which blocks oxygen from diffusing to the reaction sites. Hence, the real capacity of a Li-air battery is determined by the carbon air electrode, especially by the pore volume available for the deposition of the discharged products. In this study, a simple and fast method is reported for the large-scale synthesis of carbon nanoballs (CNBs) consisting of a highly mesoporous structure for Li-air battery cathodes. The CNBs were synthesized by the solution plasma process from benzene solution, without the need for a graphite electrode for carbon growth. The CNBs so formed were then annealed to improve their electrical conductivity. Structural characterization revealed that the CNBs exhibited both an pore structure and high conductivity.

有限要素法에 의한 舶用機關軸系裝置의 最適配置에 關한 硏究 (Optimum Alignment of Marine Engine Shaftings by the Finite Element Method)

  • 전효중;박진길;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.3-14
    • /
    • 1978
  • The authors have developed a calculating method of propeller shaft alignment by the finite element method. The propeller shaft is divided into finite elements which can be treated as uniform section bars. For each element, the nodal point equation is derived from the stiffness matrix, the external force vector and the section force vector. Then the overall nodal point equation is derived from the element nodal point equation. The deflection, offset, bending moment and shearing force of each nodal point are calculated from the overall nodal point equation by the digital computer. Reactions and deflections of supporting points of straight shaft are calculated and also the reaction influence number is derived. With the reaction influence number the optimum alignment condition that satisfies all conditions is calculated by the simplex method of linear programming. All results of calculation are compared with those of Det norske Veritas, which has developed a computor program based on the three-moment theorem of the strength of materials. The authors finite element method has shown good results and will be used effectively to design the propeller shaft alignment.

  • PDF

로봇으로 용접한 알루미늄 선박용 6061-T6 합금의 기계적, 전기화학적 특성 (Mechanical and Electrochemical Characteristics in Welding with Robot on 6061-T6 Al Alloy for Al Ship)

  • 김성종;장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.313-321
    • /
    • 2009
  • The construction of fiber-reinforced plastic (FRP) boats is decreasing trend since the application of international regulations on the control of marine environmental pollution, which recommended the use of environmentally friendly materials. The aluminum alloy used with material for ship is a superior to FRP. It is environmental friendly, easy to recycle, and provides a high added value to fishing boats. However, the welding for Al alloy materials have many problems, such as deformation by welding heat and effect of the working environment. In this paper, it was carried out welding by robot with welding material of ER5183 and ER5556 on 6061-T6 Al alloy for ship. The mechanical and electrochemical characteristics evaluated for specimen welded by robot. The cathodic polarization trend for the base metal and welding metal showed the effects of concentration polarization due to oxygen reduction and activation polarization due to hydrogen generation. The hardnesses of welding zone and heat affected zone are lower than that of base metal. At the result of tensile test, the specimen welded with ER5183 presented excellent property compared with ER5556.

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Kawahito, Yousuke;Kim, Jong-Do;Katayama, Seiji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.711-717
    • /
    • 2013
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other structures because of their high strength, light weight and corrosion-resistance. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective measures to reduce weight of the structures or to save rare metals. Ti and Al have great differences in materials properties, and intermetallic compounds such as Ti3Al, TiAl, TiAl3 are easily formed at the contacting surface between Ti and Al. Thus, welding or joining of Ti and Al is considered to be extremely difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50m/min in this study) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.