• Title/Summary/Keyword: marginal probability distribution

Search Result 35, Processing Time 0.026 seconds

Marginal distribution of crossing time and renewal numbers related with two-state Erlang process

  • Talpur, Mir Ghulam Hyder;Zamir, Iffat;Ali, M. Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.191-202
    • /
    • 2009
  • In this study, we drive the one dimensional marginal transform function, probability density function and probability distribution function for the random variables $T_{{\xi}N}$ (Time taken by the servers during the vacations), ${\xi}_N$(Number of vacations taken by the servers) and ${\eta}_N$(Number of customers or units arrive in the system) by controlling the variability of two random variables simultaneously.

  • PDF

SOME POPULAR WAVELET DISTRIBUTION

  • Nadarajah, Saralees
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.265-270
    • /
    • 2007
  • The modern approach for wavelets imposes a Bayesian prior model on the wavelet coefficients to capture the sparseness of the wavelet expansion. The idea is to build flexible probability models for the marginal posterior densities of the wavelet coefficients. In this note, we derive exact expressions for a popular model for the marginal posterior density.

COMPARISON STUDY OF BIVARIATE LAPLACE DISTRIBUTIONS WITH THE SAME MARGINAL DISTRIBUTION

  • Hong, Chong-Sun;Hong, Sung-Sick
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.1
    • /
    • pp.107-128
    • /
    • 2004
  • Bivariate Laplace distributions for which both marginal distributions and Laplace are discussed. Three kinds of bivariate Laplace distributions which are extended bivariate exponential distributions of Gumbel (1960) are introduced in this paper. These symmetrical distributions are compared with asymmetrical distributions of Kotz et al. (2000). Their probability density functions, cumulative distribution functions are derived. Conditional skewnesses and kurtoses are also defined. Their correlation coefficients are calculated and compared with others. We proposed bivariate random vector generating methods whose distributions are bivariate Laplace. With sample means and medians obtained from generated random vectors, variance and covariance matrices of means and medians are calculated and discussed with those of bivariate normal distribution.

A Note on Possibilistic Correlation

  • Hong, Dug-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.1
    • /
    • pp.1-3
    • /
    • 2009
  • Recently, Carlsson, Full\acute{e}$r and Majlender [1] presented the concept of possibilitic correlation representing an average degree of interaction between marginal distribution of a joint possibility distribution as compared to their respective dispersions. They also formulated the weak and strong forms of the possibilistic Cauchy-Schwarz inequality. In this paper, we define a new probability measure. Then the weak and strong forms of the Cauchy-Schwarz inequality are immediate consequence of probabilistic Cauchy-Schwarz inequality with respect to the new probability measure.

A Study on Comparison of Generalized Kappa Statistics in Agreement Analysis

  • Kim, Min-Seon;Song, Ki-Jun;Nam, Chung-Mo;Jung, In-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.719-731
    • /
    • 2012
  • Agreement analysis is conducted to assess reliability among rating results performed repeatedly on the same subjects by one or more raters. The kappa statistic is commonly used when rating scales are categorical. The simple and weighted kappa statistics are used to measure the degree of agreement between two raters, and the generalized kappa statistics to measure the degree of agreement among more than two raters. In this paper, we compare the performance of four different generalized kappa statistics proposed by Fleiss (1971), Conger (1980), Randolph (2005), and Gwet (2008a). We also examine how sensitive each of four generalized kappa statistics can be to the marginal probability distribution as to whether marginal balancedness and/or homogeneity hold or not. The performance of the four methods is compared in terms of the relative bias and coverage rate through simulation studies in various scenarios with different numbers of raters, subjects, and categories. A real data example is also presented to illustrate the four methods.

A Study on Noninformative Priors of Intraclass Correlation Coefficients in Familial Data

  • Jin, Bong-Soo;Kim, Byung-Hwee
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.395-411
    • /
    • 2005
  • In this paper, we develop the Jeffreys' prior, reference prior and the the probability matching priors for the difference of intraclass correlation coefficients in familial data. e prove the sufficient condition for propriety of posterior distributions. Using marginal posterior distributions under those noninformative priors, we compare posterior quantiles and frequentist coverage probability.

An importance sampling for a function of a multivariate random variable

  • Jae-Yeol Park;Hee-Geon Kang;Sunggon Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.65-85
    • /
    • 2024
  • The tail probability of a function of a multivariate random variable is not easy to estimate by the crude Monte Carlo simulation. When the occurrence of the function value over a threshold is rare, the accurate estimation of the corresponding probability requires a huge number of samples. When the explicit form of the cumulative distribution function of each component of the variable is known, the inverse transform likelihood ratio method is directly applicable scheme to estimate the tail probability efficiently. The method is a type of the importance sampling and its efficiency depends on the selection of the importance sampling distribution. When the cumulative distribution of the multivariate random variable is represented by a copula and its marginal distributions, we develop an iterative algorithm to find the optimal importance sampling distribution, and show the convergence of the algorithm. The performance of the proposed scheme is compared with the crude Monte Carlo simulation numerically.

Design wind speed prediction suitable for different parent sample distributions

  • Zhao, Lin;Hu, Xiaonong;Ge, Yaojun
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.423-435
    • /
    • 2021
  • Although existing algorithms can predict wind speed using historical observation data, for engineering feasibility, most use moment methods and probability density functions to estimate fitted parameters. However, extreme wind speed prediction accuracy for long-term return periods is not always dependent on how the optimized frequency distribution curves are obtained; long-term return periods emphasize general distribution effects rather than marginal distributions, which are closely related to potential extreme values. Moreover, there are different wind speed parent sample types; how to theoretically select the proper extreme value distribution is uncertain. The influence of different sampling time intervals has not been evaluated in the fitting process. To overcome these shortcomings, updated steps are introduced, involving parameter sensitivity analysis for different sampling time intervals. The extreme value prediction accuracy of unknown parent samples is also discussed. Probability analysis of mean wind is combined with estimation of the probability plot correlation coefficient and the maximum likelihood method; an iterative estimation algorithm is proposed. With the updated steps and comparison using a Monte Carlo simulation, a fitting policy suitable for different parent distributions is proposed; its feasibility is demonstrated in extreme wind speed evaluations at Longhua and Chuansha meteorological stations in Shanghai, China.

Bayesian Inference for Stress-Strength Systems

  • Chang, In-Hong;Kim, Byung-Hwee
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.27-34
    • /
    • 2005
  • We consider the problem of estimating the system reliability noninformative priors when both stress and strength follow generalized gamma distributions. We first derive Jeffreys' prior, group ordering reference priors, and matching priors. We investigate the propriety of posterior distributions and provide marginal posterior distributions under those noninformative priors. We also examine whether the reference priors satisfy the probability matching criterion.

  • PDF

Bivariate Frequency Analysis of Rainfall using Copula Model (Copula 모형을 이용한 이변량 강우빈도해석)

  • Joo, Kyung-Won;Shin, Ju-Young;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.827-837
    • /
    • 2012
  • The estimation of the rainfall quantile is of great importance in designing hydrologic structures. Conventionally, the rainfall quantile is estimated by univariate frequency analysis with an appropriate probability distribution. There is a limitation in which duration of rainfall is restrictive. To overcome this limitation, bivariate frequency analysis by using 3 copula models is performed in this study. Annual maximum rainfall events in 5 stations are used for frequency analysis and rainfall depth and duration are used as random variables. Gumbel (GUM), generalized logistic (GLO) distributions are applied for rainfall depth and generalized extreme value (GEV), GUM, GLO distributions are applied for rainfall duration. Copula models used in this study are Frank, Joe, and Gumbel-Hougaard models. Maximum pseudo-likelihood estimation method is used to estimate the parameter of copula, and the method of probability weighted moments is used to estimate the parameters of marginal distributions. Rainfall quantile from this procedure is compared with various marginal distributions and copula models. As a result, in change of marginal distribution, distribution of duration does not significantly affect on rainfall quantile. There are slight differences depending on the distribution of rainfall depth. In the case which the marginal distribution of rainfall depth is GUM, there is more significantly increasing along the return period than GLO. Comparing with rainfall quantiles from each copula model, Joe and Gumbel-Hougaard models show similar trend while Frank model shows rapidly increasing trend with increment of return period.