• 제목/요약/키워드: marble dust

검색결과 6건 처리시간 0.018초

A review on the effect of marble waste on properties of green concrete

  • Rachid Djebien;Amel Bouabaz;Yassine Abbas;Yasser N. Ziada
    • Advances in concrete construction
    • /
    • 제15권1호
    • /
    • pp.63-74
    • /
    • 2023
  • All production and consumption activities produce wastes, which often cause damage to our environment and multiple risks to the human health. The valorization of these wastes in concrete technology is a future solution that will allow finding other construction materials sources, optimizing energy consumption and protecting the environment. Among these wastes, there is the marble waste. Every year, huge amount of marble waste is discarded as dust or aggregates form, in open-air storage areas causing serious problems for the environment and public health. In this context, the incorporation of marble waste as a replacement of ordinary aggregates or cement in concrete composition is actively investigated by researchers. This paper presents a comprehensive review of published studies over the last 20 years, dealing the effect of marble waste on fresh and hardened properties of concrete. Most of the studies carried out have used marble waste as dust with substitution rates between 5 and 20%. Besides the economic and ecological benefits, this review showed that marble waste can improve the physical, mechanical and durability properties of concrete. This improvement depends on the form (dust, fine aggregate or coarse aggregate), substitution method (as cement or aggregates replacement) and substitution rate of marble waste. Additionally, the review results showed that the use of 10-15% of marble waste dust as cement substitution can lead to increase the compressive strength.

Effects of waste marble and glass powders on concrete properties and performance

  • Nouraldin Abunassar;Tulin Akcaoglu
    • Advances in concrete construction
    • /
    • 제17권4호
    • /
    • pp.211-220
    • /
    • 2024
  • Concrete, consisting mainly of cement, water and aggregates; is the most used construction material all over the world. Cement manufacturing industry is one of the carbon dioxide producing sources that contributes to global warming. Therefore, in the last few years, there is a growing interest in using waste materials and by-products as cement replacement materials. Using these kinds of materials as a part of cement replacement reduces the air pollution, cost and also enhances some properties of concretes. In the present work, marble dust (MD) was examined as a partial cement replacement material with seven proportions as 0%, 10%, 20%, 30%, 40%, 50%, 60% and glass powder (GP) was used as an additive, 8% by cement weight, in a 0.55 water-binder ratio concrete. In order to evaluate their effects; workability, strength (compressive, flexural and split tensile), alkalinity, sulphate resistance and ultrasonic pulse velocity tests were performed. Experimental results indicated that with MD replacement and GP addition; there is a loss in the workability but improvement in mechanical properties. With 10% replacement of MD compressive, flexural and tensile strengths increased by 10.7%, 6.2% and 5.3% respectively. Moreover, up to 30% replacement of MD reasonable strength values were obtained.

Investigation towards strength properties of ternary blended concrete

  • Imam, Ashhad;Moeeni, Shahzad Asghar;Srivastava, Vikas;Sharma, Keshav K
    • Advances in concrete construction
    • /
    • 제11권3호
    • /
    • pp.207-217
    • /
    • 2021
  • This study relates to a production of Quaternary Cement Concrete (QCC) prepared by using Micro Silica (MS), Marble Dust (MD) and Rice Husk Ash (RHA), followed by an investigation towards fresh and hardened properties of blended concrete. A total of 39 mixes were cast by incorporating different percentages of MS (6%, 7% and 8%), MD (5%, 10% and 15%) and RHA (5%, 10%, 15% and 20%) as partial replacement of Ordinary Portland Cement. The workability of fresh concrete was maintained in the range of 100±25 mm by adding 0.7% of Super Plasticizer in the mix. Optimum mechanical strength was observed at combination of 8% MS+5% MD+10% RHA. Marble dust replacement from 10 to 15% and Rice husk ash replacements from 15 to 20% depicted a substantial reduction in compressive strength at all ages. Durability parameter with respect to water absorption at 28 days shows an increasing trend as the percentage of blending increases.

열분해에 의한 폐인조대리석으로부터 산화알루미늄 회수에 관한 연구 (A Study on Recovery of Aluminum Oxide from Artificial Marble Waste by Pyrolysis)

  • 김복련;김창우;서양곤;이용순
    • Korean Chemical Engineering Research
    • /
    • 제50권3호
    • /
    • pp.567-573
    • /
    • 2012
  • 인조대리석은 천연대리석에 비해 우수한 외형, 높은 마감도, 고른 빛깔, 압력과 마모에 대한 우수한 저항성, 부식과 풍화에 대한 우수한 저항성 등의 장점을 가지고 있다. 그래서 인조대리석은 주방용 조리대, 욕실 세면대, 가구, 안내 데스크 등에 다양하게 사용되고 있다. 그러나 인조대리석을 자르고 마감하는 과정에서 많은 양의 폐기물들이 스크랩 또는 분진의 형태로 발생한다. 고급스런 인테리어 재료의 수요의 증가에 따라 인조대리석으로부터의 폐기물은 증가하고 있다. 폐인조대리석은 분쇄, 열분해, 증류공정 등을 통하여 전자재료, 세라믹 등의 원료가 되는 산화알루미늄 및 인조대리석의 원료가 되는 MMA로 재생이 가능하다. 폐인조대리석의 특성을 TGA/DSC 및 원소분석을 통해 그 특성을 분석하였다. 폐인조대리석을 분쇄 및 열분해하여 원 산화알루미늄을 얻었다. 본 연구에서는 원 산화알루미늄을 회수하는 공정의 최적화를 위해 Box-Behnken 실험계획법을 사용하였다. 원 산화알루미늄의 특성치는 색도 분석, 원소 분석 그리고 표면적 등에 의하여 평가하였다.

원각사지 십층석탑 오염물의 유기산 분석 (Analysis of the Organic Acid Contaminants on the surface of TEN-STORIED STONE PAGODA ON THE SITE OF WON-GAKSA)

  • 이규식;한성희
    • 보존과학연구
    • /
    • 통권16호
    • /
    • pp.112-122
    • /
    • 1995
  • TEN-STORIED STONE PAGODA ON THE SITE OFWON-GAKSA(Temple) which is one of three marble pagodas in South Korea, were dated from the thirteenth year of the reign of King Sejo(1467). On the roof and surface of each the stories, there were large amount of the contaminants such as pigeon′s excretions, dust and environmental elements for a long time. The pH of contaminants is not acid, but is 7.2, neutral. To find the species of organic acidscontained in the contaminants and the degree of damaging for a marble pagoda, we analyzed the contaminants using GC-MSD method by the following procedures. Organic acids were extracted by saponifying whole contaminants. After Saponification, the organic acids were mathylated to increase their volatility upon subsequent GC-MSD analysis. The mathyl esters of the organic acids are extracted from the acidified aqueous solution. And the organic extracts were washed with adilute base solution. The washed extract were analyzed by GC(Hewlett Packard 5890)with a nonpolar capillary column(Crosslinked 5% Ph Me Silicone, $50×0.2㎜×0.33\mum$film thickness, USA) and Mass Spectrometric Detector(Hewlett Packard 5970B).As the result, it was found that 12 organic acids were the main compound in pagoda′contaminants, and the amount of organic acid were negligible.

  • PDF

Durability properties of fly ash-based geopolymer mortars with different quarry waste fillers

  • Tammam, Yosra;Uysal, Mucteba;Canpolat, Orhan
    • Computers and Concrete
    • /
    • 제29권 5호
    • /
    • pp.335-346
    • /
    • 2022
  • Geopolymers are an important alternative material supporting recycling, sustainability, and waste management. Durability properties are among the most critical parameters to be investigated; in this study, the durability of manufactured geopolymer samples under the attack of 10% magnesium sulfate and 10% sodium sulfate solution was investigated. 180 cycles of freezing and thawing were also tested. The experimentally obtained results investigate the durability of geopolymer mortar prepared with fly ash (class F) and alkali activator. Three different quarry dust wastes replaced the river sand aggregate: limestone, marble, and basalt powder as fine filler aggregate in three different replacement ratios of 25%, 50%, and 75% to produce ten series of geopolymer composites. The geopolymer samples' visual appearance, weight changes, UPV, and strength properties were studied for up to 12 months at different time intervals of exposure to sulfate solutions to investigate sulfate resistance. In addition, Scanning Electron Microscopy (SEM), EDS, and XRD were used to study the microstructure of the samples. It was beneficial to include quarry waste as a filler aggregate in durability and mechanical properties. The compact matrix was demonstrated by microstructural analysis of the manufactured specimens. The geopolymer mortars immersed in sodium sulfate showed less strength reduction and deterioration than magnesium sulfate, indicating that magnesium sulfate is more aggressive than sodium sulfate. Therefore, it is concluded that using waste dust interrogation with partial replacement of river sand with fly ash-based geopolymers has satisfactory results in terms of durability properties of freeze-thaw and sulfate resistance.