DOI QR코드

DOI QR Code

A Study on Recovery of Aluminum Oxide from Artificial Marble Waste by Pyrolysis

열분해에 의한 폐인조대리석으로부터 산화알루미늄 회수에 관한 연구

  • Kim, Bok Roen (Department of Chemical and Biological Engineering, Gyeongsang National University) ;
  • Kim, Chang Woo (Department of Chemical and Biological Engineering, Gyeongsang National University) ;
  • Seo, Yang Gon (Department of Chemical and Biological Engineering, Gyeongsang National University) ;
  • Lee, Young Soon (R and E Ltd.)
  • 김복련 (경상대학교 공과대학 생명화학공학과) ;
  • 김창우 (경상대학교 공과대학 생명화학공학과) ;
  • 서양곤 (경상대학교 공과대학 생명화학공학과) ;
  • 이용순 ((주)알앤이)
  • Received : 2011.10.18
  • Accepted : 2011.12.12
  • Published : 2012.06.01

Abstract

Compared with the natural marble, the artificial marble has the advantages of excellent appearance, high degree of finish, even color, fine pressure and wear resistance, bear erosion and weathering, etc. It can be widely used in kitchen countertops, bath vanity tops, table tops, furniture, reception desks, etc. However, large amounts of artificial marble waste such as scraps or dust have been generated from sawing and polishing processes in artificial marble industry. Waste from artificial marble industry is increasing according to demand magnification of luxurious interior material. Artificial marble wastes can be recycled as aluminum oxide used as raw materials in electronic materials, ceramics production, etc., and methyl methacrylate(MMA) which become a raw material of artificial marble by pulverization, pyrolysis and distillation processes. The characteristics of artificial marble wastes was analyzed by using TGA/DSC and element analysis. Crude aluminum oxide was obtained from artificial marble waste by pulverization and thermal decomposition under nitrogen atmosphere. In this work, Box-Behnken design was used to optimize the pyrolysis process. The characteristics of crude aluminum oxide was evaluated by chromaticity analysis, element analysis, and surface area.

인조대리석은 천연대리석에 비해 우수한 외형, 높은 마감도, 고른 빛깔, 압력과 마모에 대한 우수한 저항성, 부식과 풍화에 대한 우수한 저항성 등의 장점을 가지고 있다. 그래서 인조대리석은 주방용 조리대, 욕실 세면대, 가구, 안내 데스크 등에 다양하게 사용되고 있다. 그러나 인조대리석을 자르고 마감하는 과정에서 많은 양의 폐기물들이 스크랩 또는 분진의 형태로 발생한다. 고급스런 인테리어 재료의 수요의 증가에 따라 인조대리석으로부터의 폐기물은 증가하고 있다. 폐인조대리석은 분쇄, 열분해, 증류공정 등을 통하여 전자재료, 세라믹 등의 원료가 되는 산화알루미늄 및 인조대리석의 원료가 되는 MMA로 재생이 가능하다. 폐인조대리석의 특성을 TGA/DSC 및 원소분석을 통해 그 특성을 분석하였다. 폐인조대리석을 분쇄 및 열분해하여 원 산화알루미늄을 얻었다. 본 연구에서는 원 산화알루미늄을 회수하는 공정의 최적화를 위해 Box-Behnken 실험계획법을 사용하였다. 원 산화알루미늄의 특성치는 색도 분석, 원소 분석 그리고 표면적 등에 의하여 평가하였다.

Keywords

References

  1. Ministry of Environment, Generation and Treatment of Waste in Korea in 2006(2007).
  2. Hong, S. and Kim, P. J., "International Restrictions and Counterplans of Brominated Flame Retardants," Prospectives of Industrial Chemistry, 8(6), 3-20(2005).
  3. Shin, D. H., Nho, N.S., Kim, S. S., Kim, K. H. and Jeon S. G., "A Review on R&D and Commercialization of Oil Recovery from Waste Plastics by Pyrolysis," J. Korean Ins. Resources Recycling, 19(1), 3-12(2010).
  4. Jang, D. H., Nam, B. D., Nah, S. K. and Nah, J. W., "Pyrolysis of Waste Marble Powder," Spring conference on The Korean Society of Industrial and Engineering Chemistry, May, Seoul(2007).
  5. Kwak, T. S., Lee, B. J., Yang, Y. K, Choi, J. H. and Kim, H. J., "The R&D Trends of Polymer Flame Retardants," Industrial Chem., 8, 36(2005).
  6. Mok, Y. I., "A Review of the Flame Retardation of Flamable Polymers," Appl. Chem., 15, 211(1977).
  7. Hwang, E. H. and Hwang, T. S., "Comparison of Physical Properties of PAE Polymer-Modified Mortars from Recycled Waste Artificial Marble and Waste Concrete Fine Aggregates," J. Ind. Eng. Chem., 13(4), 585-591(2007).
  8. Hwang, E. H., Ko, Y. S. and Jeon, J. K., "Effect of Polymer Cement Modifiers on Mechanical and Physical Properties of Polymer-Modified Mortar using Recycled Artificial Marble Waste Fine Aggregate," J. Ind. Eng. Chem., 14, 265-271(2008). https://doi.org/10.1016/j.jiec.2007.11.002
  9. Aruntas, H. Y., Guru, M., Dayi, M. and Tekin, I., "Utilization of Waste Marble Dust as an Additive in Cement Production," Mater. Des., 31, 4039-4042(2010). https://doi.org/10.1016/j.matdes.2010.03.036
  10. Box, G. B. P. and Behnken, D. W., "Some New Three Level Designs for the Study of Quantitative Variables," Technometrics, 2(4), 455-475(1960). https://doi.org/10.1080/00401706.1960.10489912
  11. Kotlar, C. E., Aguero, M. V. and Roura, S. I., "Simultaneous Optimization of Biomass and Protease Biosynthesis by a Local Isolated Pseudomonas sp. - Response Surface Optimization using Box-Behnken Design," Ind. Biotechnol., 6(6), 364-374(2010). https://doi.org/10.1089/ind.2010.6.364
  12. Grassie, N., "Structural Information from Degradation Studies," Pure Appl. Chem., 54(2), 337-349(1982). https://doi.org/10.1351/pac198254020337
  13. Kaminsky, W. and Eger, C., "Pyrolysis of Filled PMMA for Monomer Recovery," J. Anal. Appl. Pyrolysis, 58-59, 781-787(2001). https://doi.org/10.1016/S0165-2370(00)00171-6
  14. Grause, G., Predel, M. and Kaminsky, W., "Monomer Recovery from Alumiun Hydroxide High Filled Poly(methyl methacrylate) in a Fluidized Bed Reactor," 75, 236-239(2006). https://doi.org/10.1016/j.jaap.2005.06.006