• Title/Summary/Keyword: mapping space

Search Result 1,041, Processing Time 0.026 seconds

Development of 3D Mapping Algorithm with Non Linear Curve Fitting Method in Dynamic Contrast Enhanced MRI

  • Yoon Seong-Ik;Jahng Geon-Ho;Khang Hyun-Soo;Kim Young-Joo;Choe Bo-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2005
  • Purpose: To develop an advanced non-linear curve fitting (NLCF) algorithm for dynamic susceptibility contrast study of brain. Materials and Methods: The first pass effects give rise to spuriously high estimates of $K^{trans}$ in voxels with large vascular components. An explicit threshold value has been used to reject voxels. Results: By using this non-linear curve fitting algorithm, the blood perfusion and the volume estimation were accurately evaluated in T2*-weighted dynamic contrast enhanced (DCE)-MR images. From the recalculated each parameters, perfusion weighted image were outlined by using modified non-linear curve fitting algorithm. This results were improved estimation of T2*-weighted dynamic series. Conclusion: The present study demonstrated an improvement of an estimation of kinetic parameters from dynamic contrast-enhanced (DCE) T2*-weighted magnetic resonance imaging data, using contrast agents. The advanced kinetic models include the relation of volume transfer constant $K^{trans}\;(min^{-1})$ and the volume of extravascular extracellular space (EES) per unit volume of tissue $\nu_e$.

  • PDF

Improving Satellite Derived Soil Moisture Data Using Data Assimilation Methods (자료동화 기법을 이용한 위성영상 추출 토양수분 자료 개선)

  • Hwang, Soonho;Ryu, Jeong Hoon;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.152-152
    • /
    • 2018
  • Soil moisture is a important factor in hydrologic analysis. So, if we have spatially distributed soil moisture data, it can help to study much research in a various field. Recently, there are a lot of satellite derived soil moisture data, and it can be served through web freely. Especially, NASA (National Aeronautics and Space Administration) launched the Soil Moisture Aperture Passive (SMAP) satellite for mapping global soil moisture on 31 January 2015. SMAP data have many advantages for study, for example, SMAP data has higher spatial resolution than other satellited derived data. However, becuase many satellited derived soil moisture data have a limitation to data accuracy, if we have ancillary materials for improving data accuracy, it can be used. So, in this study, after applying the alogorithm, which is data assimilation methods, applicability of satellite derived soil moisture data was analyzed. Among the various data assimilation methods, in this study, Model Output Statistics (MOS) technique was used for improving satellite derived soil moisture data. Model Output Statistics (MOS) is a type of statistical post-processing, a class of techniques used to improve numerical weather models' ability to forecast by relating model outputs to observational or additional model data.

  • PDF

Distribution Map of Microbial Diversity in Agricultural land (농경지 토양미생물 분포도)

  • Suh, Jang-Sun;Noh, Hyung-Jun;Kwon, Jang-Sik;Weon, Hang-Yeon;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.995-1001
    • /
    • 2010
  • Biogeography is the study of the distribution of biodiversity over space and time. We report the development of a prototype database that maps of microbial diversity in the context of the geochemical and geological environment and geographic location. It aims to reveal where organisms live, and at what abundance in nation wide. Microbial data collected from agricultural land during 1999 to 2007 were categorized for mapping with ArcGIS program. Distribution maps of bacteria, fungi, Bacillus and gram negative bacteria of agricultural land showed different patterns from each other. Microbial biomass content investigated in year of 2007 was higher than in 1999.

Distributed Target Localization with Inaccurate Collaborative Sensors in Multipath Environments

  • Feng, Yuan;Yan, Qinsiwei;Tseng, Po-Hsuan;Hao, Ganlin;Wu, Nan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2299-2318
    • /
    • 2019
  • Location-aware networks are of great importance for both civil lives and military applications. Methods based on line-of-sight (LOS) measurements suffer sever performance loss in harsh environments such as indoor scenarios, where sensors can receive both LOS and non-line-of-sight (NLOS) measurements. In this paper, we propose a data association (DA) process based on the expectation maximization (EM) algorithm, which enables us to exploit multipath components (MPCs). By setting the mapping relationship between the measurements and scatters as a latent variable, coefficients of the Gaussian mixture model are estimated. Moreover, considering the misalignment of sensor position, we propose a space-alternating generalized expectation maximization (SAGE)-based algorithms to jointly update the target localization and sensor position information. A two dimensional (2-D) circularly symmetric Gaussian distribution is employed to approximate the probability density function of the sensor's position uncertainty via the minimization of the Kullback-Leibler divergence (KLD), which enables us to calculate the expectation step with low computational complexity. Moreover, a distributed implementation is derived based on the average consensus method to improve the scalability of the proposed algorithm. Simulation results demonstrate that the proposed centralized and distributed algorithms can perform close to the Monte Carlo-based method with much lower communication overhead and computational complexity.

Classification of Imbalanced Data Based on MTS-CBPSO Method: A Case Study of Financial Distress Prediction

  • Gu, Yuping;Cheng, Longsheng;Chang, Zhipeng
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.682-693
    • /
    • 2019
  • The traditional classification methods mostly assume that the data for class distribution is balanced, while imbalanced data is widely found in the real world. So it is important to solve the problem of classification with imbalanced data. In Mahalanobis-Taguchi system (MTS) algorithm, data classification model is constructed with the reference space and measurement reference scale which is come from a single normal group, and thus it is suitable to handle the imbalanced data problem. In this paper, an improved method of MTS-CBPSO is constructed by introducing the chaotic mapping and binary particle swarm optimization algorithm instead of orthogonal array and signal-to-noise ratio (SNR) to select the valid variables, in which G-means, F-measure, dimensionality reduction are regarded as the classification optimization target. This proposed method is also applied to the financial distress prediction of Chinese listed companies. Compared with the traditional MTS and the common classification methods such as SVM, C4.5, k-NN, it is showed that the MTS-CBPSO method has better result of prediction accuracy and dimensionality reduction.

The relationship of dense molecular gas and HI/H2 gas in a MALATANG galaxy, NGC 6946

  • Poojon, Panomporn;Chung, Aeree;Lee, Bumhyun;Oh, Se-Heon;Tan, Qing-Hua;Gao, Yu;Sengupta, Chandreyee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.76.3-76.3
    • /
    • 2019
  • We present the results from our comparisons of HCN and HCO+ (J=4-3) with HI and $H_2$ gas in NGC 6946, a sample from a mapping study of the dense molecular gas in the strongest star-forming galaxies (MALATANG). The MALATANG is one of the JCMT legacy surveys on the nearest 23 IR-brightest galaxies beyond the Local Group, which aims to study the relations of dense molecular gas with more general cool gas such as atomic and molecular hydrogen gas, and star formation properties in active galaxies. In this work, we particularly focus on the comparisons between the JCMT HCN/HCO+ (J=4-3) data and the THINGS HI/the NRO CO (J=1-0) data. We probe the dense molecular gas mass as a function of HI and $H_2$ mass in different locations in the central ${\sim}1.5kpc^2$ region. We discuss how the excess/deficit of $HI/H_2$ or total cool gas ($HI+H_2$) mass controls the presence and/or the fraction of dense molecular gas.

  • PDF

Modeling and simulation of large crowd evacuation in hazard-impacted environments

  • Datta, Songjukta;Behzadan, Amir H.
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.91-118
    • /
    • 2019
  • Every year, many people are severely injured or lose their lives in accidents such as fire, chemical spill, public pandemonium, school shooting, and workplace violence. Research indicates that the fate of people in an emergency situation involving one or more hazards depends not only on the design of the space (e.g., residential building, industrial facility, shopping mall, sports stadium, school, concert hall) in which the incident occurs, but also on a host of other factors including but not limited to (a) occupants' characteristics, (b) level of familiarity with and cognition of the surroundings, and (c) effectiveness of hazard intervention systems. In this paper, we present EVAQ, a simulation framework for modeling large crowd evacuation by taking into account occupants' behaviors and interactions during an emergency. In particular, human's personal (i.e., age, gender, disability) and interpersonal (i.e., group behavior and interactions) attributes are parameterized in a hazard-impacted environment. In addition, different hazard types (e.g., fire, lone wolf attacker) and propagation patterns, as well as intervention schemes (simulating building repellent systems, firefighters, law enforcement) are modeled. Next, the application of EVAQ to crowd egress planning in an airport terminal under human attack, and a shopping mall in fire emergency are presented and results are discussed. Finally, a validation test is performed using real world data from a past building fire incident to assess the reliability and integrity of EVAQ in comparison with existing evacuation modeling tools.

Considerations for Developing a SLAM System for Real-time Remote Scanning of Building Facilities (건축물 실시간 원격 스캔을 위한 SLAM 시스템 개발 시 고려사항)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In managing building facilities, spatial information is the basic data for decision making. However, the method of acquiring spatial information is not easy. In many cases, the site and drawings are often different due to changes in facilities and time after construction. In this case, the site data should be scanned to obtain spatial information. The scan data actually contains spatial information, which is a great help in making space related decisions. However, to obtain scan data, an expensive LiDAR (Light Detection and Ranging) device must be purchased, and special software for processing data obtained from the device must be available.Recently, SLAM (Simultaneous localization and mapping), an advanced map generation technology, has been spreading in the field of robotics. Using SLAM, 3D spatial information can be obtained quickly in real time without a separate matching process. This study develops and tests whether SLAM technology can be used to obtain spatial information for facility management. This draws considerations for developing a SLAM device for real-time remote scanning for facility management. However, this study focuses on the system development method that acquires spatial information necessary for facility management through SLAM technology. To this end, we develop a prototype, analyze the pros and cons, and then suggest considerations for developing a SLAM system.

A Real Time Traffic Flow Model Based on Deep Learning

  • Zhang, Shuai;Pei, Cai Y.;Liu, Wen Y.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2473-2489
    • /
    • 2022
  • Urban development has brought about the increasing saturation of urban traffic demand, and traffic congestion has become the primary problem in transportation. Roads are in a state of waiting in line or even congestion, which seriously affects people's enthusiasm and efficiency of travel. This paper mainly studies the discrete domain path planning method based on the flow data. Taking the traffic flow data based on the highway network structure as the research object, this paper uses the deep learning theory technology to complete the path weight determination process, optimizes the path planning algorithm, realizes the vehicle path planning application for the expressway, and carries on the deployment operation in the highway company. The path topology is constructed to transform the actual road information into abstract space that the machine can understand. An appropriate data structure is used for storage, and a path topology based on the modeling background of expressway is constructed to realize the mutual mapping between the two. Experiments show that the proposed method can further reduce the interpolation error, and the interpolation error in the case of random missing is smaller than that in the other two missing modes. In order to improve the real-time performance of vehicle path planning, the association features are selected, the path weights are calculated comprehensively, and the traditional path planning algorithm structure is optimized. It is of great significance for the sustainable development of cities.

POSITIVE SOLUTIONS FOR A NONLINEAR MATRIX EQUATION USING FIXED POINT RESULTS IN EXTENDED BRANCIARI b-DISTANCE SPACES

  • Reena, Jain;Hemant Kumar, Nashine;J.K., Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.709-730
    • /
    • 2022
  • We consider the nonlinear matrix equation (NMEs) of the form 𝓤 = 𝓠 + Σki=1 𝓐*iℏ(𝓤)𝓐i, where 𝓠 is n × n Hermitian positive definite matrices (HPDS), 𝓐1, 𝓐2, . . . , 𝓐m are n × n matrices, and ~ is a nonlinear self-mappings of the set of all Hermitian matrices which are continuous in the trace norm. We discuss a sufficient condition ensuring the existence of a unique positive definite solution of a given NME and demonstrate this sufficient condition for a NME 𝓤 = 𝓠 + 𝓐*1(𝓤2/900)𝓐1 + 𝓐*2(𝓤2/900)𝓐2 + 𝓐*3(𝓤2/900)𝓐3. In order to do this, we define 𝓕𝓖w-contractive conditions and derive fixed points results based on aforesaid contractive condition for a mapping in extended Branciari b-metric distance followed by two suitable examples. In addition, we introduce weak well-posed property, weak limit shadowing property and generalized Ulam-Hyers stability in the underlying space and related results.