• 제목/요약/키워드: manufacturing system operation

검색결과 802건 처리시간 0.03초

산업장 근로자의 건강증진행위에 영향을 미치는 변인 분석 (The Determinants of Health Promoting Behavior of Industrial Workers)

  • 박나진;김정순
    • 한국직업건강간호학회지
    • /
    • 제6권2호
    • /
    • pp.96-109
    • /
    • 1997
  • The purpose of this study was to identify the major factors affecting performance in health promoting behavior. The subjects for this study were 414 workers employed in one transportation manufacturing plant in Pusan and were obtained by a convenience sample. Data were collected from November 11th to December 21th, 1996 by structured questionnaires. Collected data were analyzed by SPSS PC. The results of this study are as follows. 1. The average score of performance in the health promoting behavior was 2.42 ; the range of the score was from 1.44 to 3.71. The variable with the highest degree of performance was self-actualization, whereas the one with the lowest degree was exercise. 2. In the relationships between demographic variables and performance in the health promoting behavior, only the shift system showed statistically significant differences in the total of health promoting behavior ; especially the group of no shift operation was higher in the performance of subscale such as exercise, nutrition, interpersonal support than that of the shift operation. Some demographic variables showed significant differences in the subscale of the health promoting behavior ; age, worker's career and marital status. 3. Performance in the health promoting behavior was significantly correlated with perceived health status, health conception, self-efficacy, perceived benefits and perceived barriers. 4. The most important factor that affects performance in the health promoting behavior was self-efficacy. The combination of self-efficacy, perceived benefits, perceived health status, perceived barriers, shift system and department of work accounted for 31.05% of the variance in health promoting behavior.

  • PDF

일방향 AGV 시스템 설계를 위한 시뮬레이터 개발 (Development of Simulator for Designing Unidirectional AGV Systems)

  • 이경재;서윤호
    • 한국시뮬레이션학회논문지
    • /
    • 제17권4호
    • /
    • pp.133-142
    • /
    • 2008
  • 생산시스템의 유연성과 효율성을 동시에 만족시키기 위한 자재취급 시스템으로써 AGV 시스템을 사용한다. AGV 시스템은 전체 생산시스템의 성능을 결정하는 중요 요인으로써 최적 설계안의 도출이 필수적이다. 일반적으로 상용 시뮬레이션 소프트웨어를 이용하여 AGV 시스템 설계 검증이 이루어지고 있지만, 이러한 검증 과정을 신속히 처리하기 위한 일련의 절차에 대한 개발이 필요하다. 본 연구에서는 근사최적화된 일방향 흐름 경로와 다양한 운영 파라미터를 고려할 수 있는 일방향 AGV 시스템 시뮬레이터의 아키텍처를 제시 및 개발 하였다. 개발된 AGV 시스템 시뮬레이터는 Java를 기반으로 개발되었으며, 타부탐색을 이용한 근사최적 일방향 네트워크 설계를 지원하고, 사용자가 쉽게AGV 시스템의 설계 검증 및 대안분석에 사용할 수 있도록 개발되었다. 사용자의 시스템 설계 운영 정보는 입력창을 통해 입력되며 이 정보는 레이아웃 생성기, AGV 운영계획 생성기, 통합 AGVS 생성기로 구성된 시뮬레이션 엔진에서 자동으로 AGV 시스템을 모델링 및 시뮬레이션을 하여 빠른 시간 안에 시뮬레이터 사용자에게 피드백을 제공한다.

  • PDF

Axle Counter System 국산화 개발을 위한 현장시험 결과분석 (A Result Analysis on Field Test for Localization Development of Axle Counter System)

  • 고준영;박재영
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.6214-6220
    • /
    • 2015
  • 열차위치 검지시스템에는 일반적으로 궤도회로장치가 거의 100여년을 안정적으로 사용되어 왔으나, 일반철도 구간의 역 구내, 측선, 해안선 구간 및 열차운행 빈도가 적은 지선 구간의 건널목 등에서는 녹 발생으로 궤도회로 단락불능에 따라 해소방안이 필요하다. 국내에서는 고속철도의 차축온도검지시스템과 통신기반열차제어시스템 분기부 일부에 차축카운터시스템이 사용되고 있으나, 해외의 경우 많은 국가에서 차축카운터 시스템이 없는 간선 및 지방 철도를 상상하는 것은 이제 불가능하고 지하철, 전차, 그리고 산업철도에서 상당한 증가가 확인되었다. 본 논문에서는 일반철도 구간의 역 구내 측선의 본선 및 분기부에 시험적용을 위해 기존 설치되어 있는 궤도회로와 병렬로 설치하여 로그분석을 하여 차축카운터시스템의 동작상태를 확인하였다. 그리고 오봉기지역 및 청주역 운행선 상 설치하여 연동장치와의 인터페이스 시험 및 이를 실용화하기 위한 시험결과를 분석하고, 시스템 안전측 설계, 제작 및 시스템 요구조건 등을 정립하였다.

내장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 열 특성 해석 (Thermal Characteristic Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors)

  • 김석일;조재완
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.416-423
    • /
    • 2004
  • This paper presents the thermal characteristic analysis of a high-speed horizontal machining center with spindle speed of 50,000rpm and feedrate of 120m/fin. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motors and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guides. The thermal characteristics such as the temperature distribution, temperature rise, thermal deformation and step response, are estimated based on the finite element model of machining center and the heat generation rates of heat sources related to the machine operation conditions. Especially, the thermal time constant assessed from the step response function is introduced as an index of thermal response characteristics.

  • PDF

Nanomanipulation and Nanomanufacturing based on Ion Trapping and Scanning Probe Microscopy (SPM)

  • Kim, Dong-Whan;Tae, Won-Si;Yeong, Maeng-Hui;K. L. Ekinci
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.530-537
    • /
    • 2004
  • Development of a versatile nanomanipulation tool is an overarching theme in nanotechnology. Such a tool will likely revolutionize the field given that it will enable fabrication and operation of a wealth of interesting nanodevices. This study seeks funding to create a novel nanomanipulation system with the ultimate goal of using this system for nanomanufacturing at the molecular level. The proposed design differs from existing approaches. It is based on a nanoscale ion trap integrated to a scanning prove microscope (SPM) tip. In this design, molecules to be assembled will be ionized and collected in the nanoscale ion trap all in an ultra high vacuum (UHV) environment. Once filled with the molecular ions, the nanoscale ion trap-SPM tip will be moved on a substrate surface using scanning probe microscopy techniques. The molecular ions will be placed at their precise locations on the surface. By virtue of the SPM, the devices that are being nanomanufactured will be imaged in real time as the molecular assembly process is carried out. In the later stages, automation of arrays of these nanomanipulators will be developed.

  • PDF

고효율 수중청소로봇 플랫폼 기술 개발 (Development of the Underwater Cleaning Robot Platform for a Higher Efficiency)

  • 서진호;이정우;김종걸;최영호;최일섭
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.74-84
    • /
    • 2017
  • This paper presents the development of the underwater cleaning robot platform for a higher efficiency in manufacturing industry. Human operators directly go into the cistern and clean sludge after drainage of the water so far. It is sometimes dangerous because of the harmful chemical materials from the product making process. In addition, it takes long time for water drainage and supplying it back. However, the robot cleaning operation does not need to drain water so that it could be applied to the sludge cleaning work at any time without the plant pause. Moreover, it can prevent the safety accidents because human operators are not necessary to enter directly the sludge cisterns. This paper shows the performance of cleaning work that can be applied in the industrial field through the design and development of underwater cleaning robot platform. And these results demonstrate that the developed underwater cleaning robot has great possibilities to clean other industrial water cisterns.

Cavity and Interface effect of PI-Film on Charge Accumulation and PD Activity under Bipolar Pulse Voltage

  • Akram, Shakeel;Wu, Guangning;Gao, GuoQiang;Liu, Yang
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2089-2098
    • /
    • 2015
  • With the continuous development in insulation of electrical equipment design, the reliability of the system has been enhanced. However, in the manufacturing process and during operation under continues stresses introduce local defects, such as voids between interfaces that can responsible to occurrence of partial discharge (PD), electric field distortion and accumulation of charges. These defects may lead to localize corrosion and material degradation of insulation system, and a serious threat to the equipment. A model of three layers of PI film with air gap is presented to understand the influence of interface and voids on exploitation conditions such as strong electrical field, PD activity and charge movement. The analytical analysis, and experimental results are good agreement and show that the lose contact between interfaces accumulate more residual charges and in consequences increase the electric field intensity and accelerates internal discharges. These residual charges are trapped charges, injected by the electrodes has often same polarity, so the electric field in cavities increases significantly and thus partial discharge inception voltage (PDIV) decreases. Contrary, number of PD discharge quantity increases due to interface. Interfacial polarization effect has opposite impact on electric field and PDIV as compare to void.

산화제 탱크용 벤트릴리프밸브 설계 및 개발 (Design and Development of Vent Relief Valve for Oxidizer Tank)

  • 고현석;한상엽
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.854-856
    • /
    • 2011
  • 우주발사체의 액체 추진제 공급 시스템에 사용되는 산화제 탱크용 벤트릴리프밸브를 설계하였다. 벤트릴리프밸브는 충전 중 산화제 탱크의 배기를 담당하고 충전 후 과압이 걸리지 않도록 보호하는 역할을 한다. 충전 중 탱크 배기는 벤트밸브에서 담당하며 탱크의 보호는 릴리프밸브와 벤트밸브의 연계 작동을 통하여 이루어진다. 수치해석을 통하여 공압 성능 및 동특성이 밸브 요구조건을 만족하는 것을 확인하였다. 시제품을 제작한 후 벤트릴리프밸브의 성능을 평가하기 위한 시험을 수행하고 있다.

  • PDF

탄성매니퓰레이터의 고성능 제어기 설계에 관한 연구 (A Study on High Performance Controller Design of Elastic Maniplator)

  • 이지우;한성현;이만형
    • 한국정밀공학회지
    • /
    • 제9권3호
    • /
    • pp.73-82
    • /
    • 1992
  • An industrial robot, installed real manufacturing processes an element of the system autmation, can be considered as an uncertain system due to dynamic uncertainties in inertial parameters and varying payloads. Most difficuties in controlling a robot manipulator are caused by the fact that the dynamic equations describing the motions of the manipulator are inherently nonlinear and heavily coupled effects between joints and associated links. Existing robot conrol systems have constant predefined gains and do not cover the complex dynamic interactions between manipulator joints. As a result, the manipulator is severly limited in range of application, speed of operation and variation of payload. The proposed controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories defined by the desinger. The proposed manipulator studied has two loops, an inner loop of model reference adaptive controller and an outer loop of state feedback controller with integral action to guarantee the stability of the adaptive scheme. This adaptation algorithm is based on the hyperstailiy approach with an improved Lyapunov function. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance in practical working environment, various load variations and parameter uncertainties.

  • PDF

내장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 열 특성 해석 (Thermal Characteristic Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors)

  • 김석일;조재완
    • 한국공작기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.30-37
    • /
    • 2004
  • This paper presents the thermal characteristic analysis of a high-speed horizontal machining center with spindle speed of 50,000rpm and feedrate of 120m/min. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motors and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guides. The thermal characteristics such as the temperature distribution, temperature rise, thermal deformation and step response, are estimated based on the finite element model of machining center and the heat generation rates of heat sources related to the machine operation conditions. Especially, the thermal time constant assessed from the step response function is introduced as an index of thermal response characteristics.