• Title/Summary/Keyword: manufacturing collaboration

Search Result 206, Processing Time 0.027 seconds

Technology Capabilities, Collaboration Performance and Satisfaction: Moderating Effect of Trust (기업의 기술역량이 협력성과와 협력만족도에 미치는 영향 - 신뢰의 조절효과 -)

  • Lee, Sun-Kyu;Park, Jin-Han;Jun, Beyong-Ju;Chang, Won-Tae
    • Journal of Digital Convergence
    • /
    • v.9 no.5
    • /
    • pp.175-191
    • /
    • 2011
  • To improve cooperative performance, organizations are increasingly developing its technology capabilities to maintain performance and satisfaction with its collative partners. The data for 143 collaboration experiences from domestic manufacturing firms were used to test hierarchical regression model with trust moderating between technology capabilities and collaborative performance and satisfaction. The result suggests that technological human resources, technological organization, technological leadership are the most important factors to affect positively collaborative performance and satisfaction, and there are interaction effects of trust on technological assets and technological organization with collaborative performance and satisfaction.

INTERNATIONAL COLLABORATION FOR SILICON CARBIDE MIRROR POLISHING AND DEVELOPMENT

  • HAN, JEONG-YEOL;CHO, MYUNG;POCZULP, GARY;NAH, JAKYUNG;SEO, HYUN-JOO;KIM, KYUNG-HWAN;TAHK, KYUNG-MO;KIM, DONG-KYUN;KIM, JINHO;SEO, MINHO;LEE, JONGGUN;HAN, SUNG-YEOP
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.687-690
    • /
    • 2015
  • For research and development of Silicon Carbide (SiC) mirrors, the Korea Astronomy and Space Science Institute (KASI) and National Optical Astronomy Observatory (NOAO) have agreed to cooperate and share on polishing and measuring facilities, experience and human resources for two years (2014-2015). The main goals of the SiC mirror polishing are to achieve optical surface figures of less than 20 nm rms and optical surface roughness of less than 2 nm rms. In addition, Green Optics Co., Ltd (GO) has been interested in the SiC polishing and joined the partnership with KASI. KASI will be involved in the development of the SiC polishing and the optical surface measurement using three different kinds of SiC materials and manufacturing processes (POCO$^{TM}$, CoorsTek$^{TM}$ and SSG$^{TM}$ corporations) provided by NOAO. GO will polish the SiC substrate within requirements. Additionally, the requirements of the optical surface imperfections are given as: less than 40 um scratch and 500 um dig. In this paper, we introduce the international collaboration and interim results for SiC mirror polishing and development.

A Study for Materials Collaboration between the Methodist Church Organizations (감리교 기관의 자료 협력을 위한 연구)

  • Park, Hyun-Young;Nam, Tae-Woo
    • Journal of Information Management
    • /
    • v.41 no.4
    • /
    • pp.119-140
    • /
    • 2010
  • Methodist church materials are classified with three types, centered on the organizations manufacturing and holding materials such as 1) 'materials of the Methodist headquarter' governing all of the Methodist churches in Korea, 2) 'materials of theological seminary libraries' holding academic study books related to theology, and 3) 'materials manufactured in individual churches'. In this manner, the Methodist church materials imply homogeneity in theme, but the materials have identity from each other, because organizations are different each other, too. By a characteristic of each organizations, to use Methodist church document done a director of each organization is demanded collaboration between the material departments of each organizations, this study intends to analysis material department operation status of three Methodist church organizations. As a result of analysis, it is necessary to perform the prior tasks, such as reconstructing organization to accomplish an original function of the Methodist headquarter, developing operation regulation classified with the Methodist church group, and constructing material management system.

Research Trend of High Aspect Ratio Contact Etching used in Semiconductor Memory Device Manufacturing (반도체 메모리 소자 제조에서 High Aspect Ratio Contact 식각 연구 동향)

  • Hyun-Woo Tak;Myeong-Ho Park;Jun-Soo Lee;Chan-Hyuk Choi;Bong-Sun Kim;Jun-Ki Jang;Eun-Koo Kim;Dong-Woo Kim;Geun-Young Yeom
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.3
    • /
    • pp.165-178
    • /
    • 2024
  • In semiconductor memory device manufacturing, the capability for high aspect ratio contact (HARC) etching determines the density of memory device. Given that there is no standardized definition of "high" in high aspect ratio, it is crucial to continuously monitor recent technology trends to address technological gaps. Not only semiconductor memory manufacturing companies such as Samsung Electronics, SK Hynix, and Micron but also semiconductor manufacturing equipment companies such as Lam Research, Applied Materials, Tokyo Electron, and SEMES release annual reports on HARC etching technology. Although there is a gap in technological focus between semiconductor mass production environments and various research institutes, the results from these institutes significantly contribute by demonstrating fundamental mechanisms with empirical evidence, often in collaboration with industry researchers. This paper reviews recent studies on HARC etching and the study of dielectric etching in various technologies.

REDUCING LATENCY IN SMART MANUFACTURING SERVICE SYSTEM USING EDGE COMPUTING

  • Vimal, S.;Jesuva, Arockiadoss S;Bharathiraja, S;Guru, S;Jackins, V.
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.15-22
    • /
    • 2021
  • In a smart manufacturing environment, more and more devices are connected to the Internet so that a large volume of data can be obtained during all phases of the product life cycle. The large-scale industries, companies and organizations that have more operational units scattered among the various geographical locations face a huge resource consumption because of their unorganized structure of sharing resources among themselves that directly affects the supply chain of the corresponding concerns. Cloud-based smart manufacturing paradigm facilitates a new variety of applications and services to analyze a large volume of data and enable large-scale manufacturing collaboration. The manufacturing units include machinery that may be situated in different geological areas and process instances that are executed from different machinery data should be constantly managed by the super admin to coordinate the manufacturing process in the large-scale industries these environments make the manufacturing process a tedious work to maintain the efficiency of the production unit. The data from all these instances should be monitored to maintain the integrity of the manufacturing service system, all these data are computed in the cloud environment which leads to the latency in the performance of the smart manufacturing service system. Instead, validating data from the external device, we propose to validate the data at the front-end of each device. The validation process can be automated by script validation and then the processed data will be sent to the cloud processing and storing unit. Along with the end-device data validation we will implement the APM(Asset Performance Management) to enhance the productive functionality of the manufacturers. The manufacturing service system will be chunked into modules based on the functionalities of the machines and process instances corresponding to the time schedules of the respective machines. On breaking the whole system into chunks of modules and further divisions as required we can reduce the data loss or data mismatch due to the processing of data from the instances that may be down for maintenance or malfunction ties of the machinery. This will help the admin to trace the individual domains of the smart manufacturing service system that needs attention for error recovery among the various process instances from different machines that operate on the various conditions. This helps in reducing the latency, which in turn increases the efficiency of the whole system

A Novel Reference Model for Cloud Manufacturing CPS Platform Based on oneM2M Standard (제조 클라우드 CPS를 위한 oneM2M 기반의 플랫폼 참조 모델)

  • Yun, Seongjin;Kim, Hanjin;Shin, Hyeonyeop;Chin, Hoe Seung;Kim, Won-Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.2
    • /
    • pp.41-56
    • /
    • 2019
  • Cloud manufacturing is a new concept of manufacturing process that works like a single factory with connected multiple factories. The cloud manufacturing system is a kind of large-scale CPS that produces products through the collaboration of distributed manufacturing facilities based on technologies such as cloud computing, IoT, and virtualization. It utilizes diverse and distributed facilities based on centralized information systems, which allows flexible composition user-centric and service-oriented large-scale systems. However, the cloud manufacturing system is composed of a large number of highly heterogeneous subsystems. It has difficulties in interconnection, data exchange, information processing, and system verification for system construction. In this paper, we derive the user requirements of various aspects of the cloud manufacturing system, such as functional, human, trustworthiness, timing, data and composition, based on the CPS Framework, which is the analysis methodology for CPS. Next, by analyzing the user requirements we define the system requirements including scalability, composability, interactivity, dependability, timing, interoperability and intelligence. We map the defined CPS system requirements to the requirements of oneM2M, which is the platform standard for IoT, so that the support of the system requirements at the level of the IoT platform is verified through Mobius, which is the implementation of oneM2M standard. Analyzing the verification result, finally, we propose a large-scale cloud manufacturing platform based on oneM2M that can meet the cloud manufacturing requirements to support the overall features of the Cloud Manufacturing CPS with dependability.

Analysis of Research Trends of Cyber Physical System(CPS) in the Manufacturing Industry (제조 분야 사이버 물리 시스템(CPS) 연구 동향 분석)

  • Kang, Hyung-Muck;Hwang, Kyung-Tae
    • Informatization Policy
    • /
    • v.25 no.3
    • /
    • pp.3-28
    • /
    • 2018
  • The purpose of this study is to analyze the research trends and present future research directions in the field of Cyber Physical System (CPS), a key element in the 4th Industrial Revolution, Industry 4.0, and Smart Manufacturing that are currently promoted as important innovation agenda both at home and abroad. In this study, (1) the concepts of industry 4.0, smart manufacturing and CPS are summarized; (2) analysis criteria of these fields are established; and 3) analysis results are presented and future research direction is proposed. 74 overseas and 8 domestic literature on manufacturing CPS from 2013 to 2017 are identified through 'Google Scholar Search'. Major results of the analysis are summarized as follows: (1) research on a common methodology and framework for the manufacturing CPS needs to be done based on the analysis of the existing methodologies and frameworks of various perspectives; (2) in order to improve the maturity of the manufacturing CPS, it is necessary to study actual deployment and operations of CPS, including the existing systems; (3) it is necessary to study the diagnostic methodology that can evaluate manufacturing CPS and suggest improvement strategy; and (4) as for the detailed model and tool, it is necessary to reinforce research on SCM production planning and human-machine collaboration while considering the characteristics of CPS.

Industrial Transformation in digital economy: A Case Study on PC and Comsumer Industries (디지털경제와 산업 전환: PC와 가전 산업의 사례 연구)

  • 배영자
    • Proceedings of the Technology Innovation Conference
    • /
    • 2002.02a
    • /
    • pp.133-149
    • /
    • 2002
  • This study aims to investigate the impact of wide use of digital technology, in particular, the Internet, on innovation process and corporate strategy in electronics industry. The introduction of digital technology has changed innovation process, business model and organizational structure of the electronics companies. With the introduction of digital technology, the entire value chain of electronics industry from procurement, sales, and marketing to R&D and manufacturing has been restructured. E-commerce has been a major agenda for e-business. Recently, collaboration among electronics companies through e-marketplace has emerged as an important issue. A web-based e-commerce standard, so called RosettaNet, has been developed for facilitating e-transactions of electronics firms. The development of digital technology has dramatically increased the processing speed and sophisticated the virtual reality technology. As simulation becomes easier and more effective, the uncertainty and risk involved in R&D has decreased significantly. Another positive impact is closer cooperation between R&D and manufacturing functions. Taking advantage of automated and flexible production technology, has a new type of firm, so called, EMS (Electronics Manufacturing Services) emerged, whose strategic focus is on manufacturing only. The EMS can be seen as a kind of innovative organization, that is, a modular organization for production function. Digital technology has made convergence of computer and communication possible at early years but right now the convergence has been accelerated in extensive areas of communication, broadcasting, information appliances, software, contents, and services. Firms' effort for an innovative product and service has been intensified and the competition for a new standard product and service has become severe in electronics industry. Business activities are always realized in a specific organizational context. Accordingly building up innovation-friendly organization has emerged as a critical concern. Due to the striking decrease of transaction cost, a network type of organization has proliferated, and a business function turns into a modular organization. As a whole, digital technology has pushed electronics firms into developing their own business model, which takes consideration of standardization of business platform and their core competency.

  • PDF

The Impacts of IT Infrastructure Flexibility on New Product Competitive Advantages (정보기술 기반구조의 유연성이 신제품 경쟁우위에 미치는 영향)

  • Jung, Seung-Min;Kim, Joon-S.;Im, Kun-Shin
    • Asia pacific journal of information systems
    • /
    • v.17 no.2
    • /
    • pp.1-28
    • /
    • 2007
  • The success of new product development is a key factor for getting competitive advantages. Marketing research has been investigating marketing capability, manufacturing technical capability, cross-functional integration, market knowledge competence, market orientation, and competitive environment as the key success factors of new product development. Recently, the role of IT infrastructure in enhancing new product advantage is assumed in the literature. However, the empirical studies on the role of IT infrastructure are lacking. The purpose of this study is to empirically exam the impacts of IT infrastructure on new product competitive advantage. In this study, IT infrastructure is conceptualized as the flexibility of IT infrastructure. Based on previous research, a conceptual model is established by incorporating the direct impact of IT infrastructure flexibility and its indirect impact through the key success factors on new product development. To empirically test the research model, data are surveyed from a pair of IS department and Marketing department of 92 consumer goods manufacturers. By employing PLS technique, the measurement reliability and reliability of research variables are tested and the path analysis is conducted to do the hypothesis testing. The path analysis shows that IT infrastructure flexibility has no direct effect on new product advantage, However, the indirect effect of IT infrastructure is found, which is mediated by marketing capability, manufacturing technical capability, cross-functional integration, and market orientation respectively. Hence, The flexible IT infrastructure increases cross-functional integration (H1), market orientation (H3), marketing capability (H5), and manufacturing technical capability (H6). All success factors of new product development excepts for competitive environment have a positive association with new product competitive advantages (from H10 to H14). Finally, the path from IT infrastructure flexibility to cross-functional integration, to market orientation, to market knowledge capability, and to new product advantage is found as the strongest path. These results indicate that the flexible IT infrastructure enhances information sharing with multiple departments and collaboration within a distributed innovation environment. The collaboration among departments positively affects the level of customer and competitor intelligence. The ability to obtain knowledge about customers and competitors makes firms to adapt to a changing environment quickly and to respond to customers' demands adequately. The flexible IT infrastructure also enhances the capability of organization to more rapidly respond to the changes in product design resulting in faster product development and reduced costs. In addition to, it enhances marketing capability by the two-way communications with customers and the analyses of various kinds of customer data. In brief, the finding of this study suggests that the flexible IT infrastructure allows many firms to pursue sustained new product competitive advantages. This study advances research on IT infrastructure in two important aspects. First, by Integrating marketing research and IS research, this study develops a conceptual model on the role of IT infrastructure in enhancing new product advantage. Second, it empirically finds the indirect impacts of IT infrastructure on new product advantage, which confirms the potential for the IS field to contribute to new product development research. The limitations of this study are also discussed to provide research directions for future research.

Corporate strategy for competitiveness of textile products (섬유제품의 경쟁력 제고를 위한 기업의 전략방안)

  • 강병서
    • Korean Management Science Review
    • /
    • v.12 no.2
    • /
    • pp.1-14
    • /
    • 1995
  • Recently Korean textile industry has been in the phase that requires its strategy change from the less-develped country style of the labor-intensive products to the developed country style of the technology-intensive products. It needs to make more efforts to develop the value-added products to meet the customer's various needs. In addition, development of technology, equipment, and design is required to implement its corporate strategy successfully. Although Korean textile companies have currently kept skillful labor and advanced equipments, they are losing their share in the international textile markets. This is mainly because corporate management has not been involved with efficient strategy. Strategy is an adoption of a company to environment by its corporate members, thus leading to the requirement of coordination of the main functions such as manufacturing and marketing. In fact, the coordination of the two departments toward reaching the corporate goal is not easy since the two are interested in different areas, respectively. Manufacturing people show their interests in production capacity, equipment layout, process technology, quality, purchasing, and labor while marketing people, target customer, product mix, advertisement, product specification, and customer service. For this reason, conflicts sometimes happen between the two departments. There are, however, many area that need a horizontal cooperation, for instance, in layout, process technology, product mix, and potential demand. Therefore, reciprocal coordination is necessary for achieving the firm's common objectives. This study was concerned with determining the factors that enhance the competitiveness of textile firms so that they could reach the common goal of the two departments with a horizontal collaboration.

  • PDF